Missing Data Imputation Based on Dynamically Adaptable Structural Equation Modeling with Self-Attention
- URL: http://arxiv.org/abs/2308.12388v4
- Date: Thu, 25 Apr 2024 06:34:19 GMT
- Title: Missing Data Imputation Based on Dynamically Adaptable Structural Equation Modeling with Self-Attention
- Authors: Ou Deng, Qun Jin,
- Abstract summary: This paper proposes dynamically adaptable structural equation modeling (SEM) using a self-attention method (SESA)
SESA innovates beyond traditional SEM-based methods by incorporating self-attention mechanisms.
Our experimental analyses demonstrate the achievement of robust predictive SESA performance for effectively handling missing data in EHR.
- Score: 2.250580490933205
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Addressing missing data in complex datasets including electronic health records (EHR) is critical for ensuring accurate analysis and decision-making in healthcare. This paper proposes dynamically adaptable structural equation modeling (SEM) using a self-attention method (SESA), an approach to data imputation in EHR. SESA innovates beyond traditional SEM-based methods by incorporating self-attention mechanisms, thereby enhancing model adaptability and accuracy across diverse EHR datasets. Such enhancement allows SESA to dynamically adjust and optimize imputation and overcome the limitations of static SEM frameworks. Our experimental analyses demonstrate the achievement of robust predictive SESA performance for effectively handling missing data in EHR. Moreover, the SESA architecture not only rectifies potential mis-specifications in SEM but also synergizes with causal discovery algorithms to refine its imputation logic based on underlying data structures. Such features highlight its capabilities and broadening applicational potential in EHR data analysis and beyond, marking a reasonable leap forward in the field of data imputation.
Related papers
- Integrated Analysis for Electronic Health Records with Structured and Sporadic Missingness [11.56234410514708]
We propose a novel imputation method tailored for Electronic Health Records (EHRs) with structured and sporadic missingness.<n>By addressing these gaps, our method provides a practical solution for integrated analysis, enhancing data utility and advancing the understanding of population health.
arXiv Detail & Related papers (2025-06-10T19:59:49Z) - Exploring Scaling Laws for EHR Foundation Models [17.84205864956449]
We present the first empirical investigation of scaling laws for EHR foundation models.<n>We identify consistent scaling patterns, including parabolic IsoFLOPs curves and power-law relationships between compute, model parameters, data size, and clinical utility.
arXiv Detail & Related papers (2025-05-29T01:05:11Z) - Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training [49.8035317670223]
A scientific foundation model (SciFM) is emerging as a promising tool for learning transferable representations across diverse domains.
We propose incorporating PDE residuals into pre-training either as the sole learning signal or in combination with data loss to compensate for limited or infeasible training data.
Our results show that pre-training with PDE constraints significantly enhances generalization, outperforming models trained solely on solution data.
arXiv Detail & Related papers (2025-03-24T19:12:39Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - A Foundational Brain Dynamics Model via Stochastic Optimal Control [15.8358479596609]
We introduce a foundational model for brain dynamics that utilizes optimal control (SOC) and amortized inference.
Our method features a continuous-discrete state space model (SSM) that can robustly handle the intricate and noisy nature of fMRI signals.
Our model attains state-of-the-art results across a variety of downstream tasks, including demographic prediction, trait analysis, disease diagnosis, and prognosis.
arXiv Detail & Related papers (2025-02-07T12:57:26Z) - CAAT-EHR: Cross-Attentional Autoregressive Transformer for Multimodal Electronic Health Record Embeddings [0.0]
We introduce CAAT-EHR, a novel architecture designed to generate task-agnostic longitudinal embeddings from raw EHR data.
An autoregressive decoder complements the encoder by predicting future time points data during pre-training, ensuring that the resulting embeddings maintain temporal consistency and alignment.
arXiv Detail & Related papers (2025-01-31T05:00:02Z) - InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems.
We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped parameter hemodynamic model from synthetic data to real data with missing components.
arXiv Detail & Related papers (2024-08-15T17:07:40Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - ICU Bloodstream Infection Prediction: A Transformer-Based Approach for EHR Analysis [0.0]
We introduce RatchetEHR, a novel framework designed for the predictive analysis of electronic health records (EHR) data in intensive care unit (ICU) settings.
R RatchetEHR demonstrates superior predictive performance compared to other methods, including RNN, LSTM, and XGBoost.
A key innovation in RatchetEHR is the integration of the Graph Convolutional Transformer (GCT) component, which significantly enhances the ability to identify hidden structural relationships.
arXiv Detail & Related papers (2024-05-01T19:00:30Z) - Automated Fusion of Multimodal Electronic Health Records for Better
Medical Predictions [48.0590120095748]
We propose a novel neural architecture search (NAS) framework named AutoFM, which can automatically search for the optimal model architectures for encoding diverse input modalities and fusion strategies.
We conduct thorough experiments on real-world multi-modal EHR data and prediction tasks, and the results demonstrate that our framework achieves significant performance improvement over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-01-20T15:14:14Z) - EEGFormer: Towards Transferable and Interpretable Large-Scale EEG
Foundation Model [39.363511340878624]
We present a novel EEG foundation model, namely EEGFormer, pretrained on large-scale compound EEG data.
To validate the effectiveness of our model, we extensively evaluate it on various downstream tasks and assess the performance under different transfer settings.
arXiv Detail & Related papers (2024-01-11T17:36:24Z) - Inference of Dependency Knowledge Graph for Electronic Health Records [13.35941801610195]
We propose a framework for deriving a sparse knowledge graph based on the dynamic log-linear topic model.
Within this model, the KG embeddings are estimated by performing singular value decomposition on the empirical pointwise mutual information matrix.
We then establish entrywise normality for the KG low-rank estimator, enabling the recovery of sparse graph edges with controlled type I error.
arXiv Detail & Related papers (2023-12-25T04:45:36Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.