A Fast and Stable Marginal-Likelihood Calibration Method with Application to Quantum Characterization
- URL: http://arxiv.org/abs/2308.12552v2
- Date: Mon, 09 Dec 2024 17:08:50 GMT
- Title: A Fast and Stable Marginal-Likelihood Calibration Method with Application to Quantum Characterization
- Authors: Mohammad Motamed, N. Anders Petersson,
- Abstract summary: We present a marginal likelihood strategy integrated into the Kennedy-O'Hagan (KOH) Bayesian framework.<n>The proposed method is both computationally efficient and numerically stable, even in large dataset regimes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a marginal likelihood strategy integrated into the Kennedy-O'Hagan (KOH) Bayesian framework, where a Gaussian process serves as a prior for model discrepancy. The proposed method is both computationally efficient and numerically stable, even in large dataset regimes where the likelihood function approaches degeneracy. Applied to the characterization of a super-conducting quantum device at Lawrence Livermore National Laboratory, the approach enhances the predictive accuracy of the Lindblad master equations for modeling Ramsey measurement data by effectively quantifying uncertainties consistent with the quantum data
Related papers
- Practical Application of the Quantum Carleman Lattice Boltzmann Method in Industrial CFD Simulations [44.99833362998488]
This work presents a practical numerical assessment of a hybrid quantum-classical approach to CFD based on the Lattice Boltzmann Method (LBM)
We evaluate this method on three benchmark cases featuring different boundary conditions, periodic, bounceback, and moving wall.
Our results confirm the validity of the approach, achieving median error fidelities on the order of $10-3$ and success probabilities sufficient for practical quantum state sampling.
arXiv Detail & Related papers (2025-04-17T15:41:48Z) - A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
This paper presents a novel probabilistic machine learning approach for high-dimensional quantile prediction.
It uses a pseudo-Bayesian framework with a scaled Student-t prior and Langevin Monte Carlo for efficient computation.
Its effectiveness is validated through simulations and real-world data, where it performs competitively against established frequentist and Bayesian techniques.
arXiv Detail & Related papers (2024-09-03T08:01:01Z) - QuaCK-TSF: Quantum-Classical Kernelized Time Series Forecasting [7.945302052915863]
This paper introduces a novel approach that blends the robustness of this Bayesian technique with the nuanced insights provided by the kernel perspective on quantum models.
We incorporate a quantum feature map inspired by Ising interactions and demonstrate its effectiveness in capturing the temporal dependencies critical for precise forecasting.
arXiv Detail & Related papers (2024-08-21T21:39:31Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
We introduce lower bounds to the linearized Laplace approximation of the marginal likelihood.
These bounds are amenable togradient-based optimization and allow to trade off estimation accuracy against computational complexity.
arXiv Detail & Related papers (2023-06-06T19:02:57Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Uncertainty Disentanglement with Non-stationary Heteroscedastic Gaussian
Processes for Active Learning [10.757942829334057]
We propose a Non-stationary Heteroscedastic Gaussian process model which can be learned with gradient-based techniques.
We demonstrate the interpretability of the proposed model by separating the overall uncertainty into aleatoric (irreducible) and epistemic (model) uncertainty.
arXiv Detail & Related papers (2022-10-20T02:18:19Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
We study the numerical stability of scalable sparse approximations based on inducing points.
For low-dimensional tasks such as geospatial modeling, we propose an automated method for computing inducing points satisfying these conditions.
arXiv Detail & Related papers (2022-10-14T15:20:17Z) - Compensating for non-linear distortions in controlled quantum systems [0.0]
Distortion of the input fields in an experimental platform alters the model accuracy and disturbs the predicted dynamics.
We present an effective method for estimating these distortions which is suitable for non-linear transfer functions of arbitrary lengths and magnitudes.
We have successfully tested our approach for a numerical example of a single Rydberg atom system.
arXiv Detail & Related papers (2022-10-14T14:02:39Z) - A General Framework for quantifying Aleatoric and Epistemic uncertainty
in Graph Neural Networks [0.29494468099506893]
Graph Neural Networks (GNN) provide a powerful framework that elegantly integrates Graph theory with Machine learning.
We consider the problem of quantifying the uncertainty in predictions of GNN stemming from modeling errors and measurement uncertainty.
We propose a unified approach to treat both sources of uncertainty in a Bayesian framework.
arXiv Detail & Related papers (2022-05-20T05:25:40Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Flow-based sampling in the lattice Schwinger model at criticality [54.48885403692739]
Flow-based algorithms may provide efficient sampling of field distributions for lattice field theory applications.
We provide a numerical demonstration of robust flow-based sampling in the Schwinger model at the critical value of the fermion mass.
arXiv Detail & Related papers (2022-02-23T19:00:00Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - Quantifying Model Predictive Uncertainty with Perturbation Theory [21.591460685054546]
We propose a framework for predictive uncertainty quantification of a neural network.
We use perturbation theory from quantum physics to formulate a moment decomposition problem.
Our approach provides fast model predictive uncertainty estimates with much greater precision and calibration.
arXiv Detail & Related papers (2021-09-22T17:55:09Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Robust Interior Point Method for Quantum Key Distribution Rate
Computation [5.43684033059546]
We derive a stable reformulation of the convex nonlinear semidefinite programming, SDP, model for the key rate calculation problems.
We report on empirical results that dramatically improve on speed and accuracy, as well as solving previously intractable problems.
arXiv Detail & Related papers (2021-04-08T15:49:37Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Efficient qubit phase estimation using adaptive measurements [0.0]
Estimating the quantum phase of a physical system is a central problem in quantum parameter estimation theory.
Current methods to estimate quantum phases fail to reach the quantum Cram'er-Rao bound.
We propose a new adaptive scheme based on covariant measurements to circumvent this problem.
arXiv Detail & Related papers (2020-12-21T02:43:47Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Towards a Kernel based Uncertainty Decomposition Framework for Data and
Models [20.348825818435767]
This paper introduces a new framework for quantifying predictive uncertainty for both data and models.
We apply this framework as a surrogate tool for predictive uncertainty quantification of point-prediction neural network models.
arXiv Detail & Related papers (2020-01-30T18:35:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.