論文の概要: The inverse problem for neural networks
- arxiv url: http://arxiv.org/abs/2308.14093v1
- Date: Sun, 27 Aug 2023 12:35:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 16:55:39.138839
- Title: The inverse problem for neural networks
- Title(参考訳): ニューラルネットワークの逆問題
- Authors: Marcelo Forets and Christian Schilling
- Abstract要約: 本稿では,一括アフィン活性化関数を持つニューラルネットワークの下での集合の事前イメージの計算問題について検討する。
本稿では,ニューラルネットワークの解析と解釈可能性に関する事前計算の応用について述べる。
- 参考スコア(独自算出の注目度): 3.2634122554914002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of computing the preimage of a set under a neural
network with piecewise-affine activation functions. We recall an old result
that the preimage of a polyhedral set is again a union of polyhedral sets and
can be effectively computed. We show several applications of computing the
preimage for analysis and interpretability of neural networks.
- Abstract(参考訳): 本研究では,断片的アフィン活性化機能を有するニューラルネットワークによる集合の前像計算の問題について検討する。
我々は、多面体集合の前像が再び多面体集合の和であり、効果的に計算できるという古い結果を思い出す。
本稿では,ニューラルネットワークの解析と解釈にプリイメージを計算するいくつかの応用例を示す。
関連論文リスト
- Topological obstruction to the training of shallow ReLU neural networks [0.0]
損失ランドスケープの幾何学と単純なニューラルネットワークの最適化軌跡との相互作用について検討する。
本稿では,勾配流を用いた浅部ReLUニューラルネットワークの損失景観におけるトポロジカル障害物の存在を明らかにする。
論文 参考訳(メタデータ) (2024-10-18T19:17:48Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Image segmentation with traveling waves in an exactly solvable recurrent
neural network [71.74150501418039]
繰り返しニューラルネットワークは、シーンの構造特性に応じて、画像をグループに効果的に分割できることを示す。
本稿では,このネットワークにおけるオブジェクトセグメンテーションのメカニズムを正確に記述する。
次に、グレースケール画像中の単純な幾何学的対象から自然画像まで、入力をまたいで一般化するオブジェクトセグメンテーションの簡単なアルゴリズムを実証する。
論文 参考訳(メタデータ) (2023-11-28T16:46:44Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Open- and Closed-Loop Neural Network Verification using Polynomial
Zonotopes [6.591194329459251]
本稿では, 密接な非接触活性化関数を効率的に計算するための新しい手法を提案する。
特に,各ニューロンの入力出力関係を近似を用いて評価する。
その結果、他の手法よりも優れた性能が得られる。
論文 参考訳(メタデータ) (2022-07-06T14:39:19Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
深部畳み込みニューラルネットワークにおける平均2乗誤差解析について考察する。
付加的なリッジ関数に対しては、畳み込みニューラルネットワークとReLUアクティベーション関数を併用した1つの完全連結層が最適極小値に到達できることが示される。
論文 参考訳(メタデータ) (2022-02-24T14:22:32Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
スパース符号化に基づく画像復元モデルの堅牢性と効率に触発され,深部ネットワークにおけるニューロンの空間性について検討した。
本手法は,隠れたニューロンに対する空間的制約を構造的に強制する。
実験により、複数の画像復元タスクのためのディープニューラルネットワークではスパース表現が不可欠であることが示されている。
論文 参考訳(メタデータ) (2020-06-08T05:15:17Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
訓練されていない畳み込みニューラルネットワークは、画像の回復と復元に非常に成功したツールとして登場した。
トレーニングされていない畳み込みニューラルネットワークは、ほぼ最小限のランダムな測定値から、十分に構造化された信号や画像を概ね再構成可能であることを示す。
論文 参考訳(メタデータ) (2020-05-07T15:57:25Z) - A function space analysis of finite neural networks with insights from
sampling theory [41.07083436560303]
非拡張活性化関数を持つ多層ネットワークが生成する関数空間は滑らかであることを示す。
入力が帯域制限の仮定の下では、新しいエラー境界を提供する。
前者の利点を示す決定論的一様とランダムサンプリングの両方を解析した。
論文 参考訳(メタデータ) (2020-04-15T10:25:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。