論文の概要: Generalized Simplicial Attention Neural Networks
- arxiv url: http://arxiv.org/abs/2309.02138v1
- Date: Tue, 5 Sep 2023 11:29:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 15:14:14.336934
- Title: Generalized Simplicial Attention Neural Networks
- Title(参考訳): 一般化された単純注意ニューラルネットワーク
- Authors: Claudio Battiloro, Lucia Testa, Lorenzo Giusti, Stefania Sardellitti,
Paolo Di Lorenzo, Sergio Barbarossa
- Abstract要約: 我々はGSAN(Generalized Simplicial Attention Neural Networks)を紹介する。
GSANはマスク付き自己意図層を用いて単純な複合体上で定義されたデータを処理する。
理論的には、GSANは置換同変であり、単純な認識である。
- 参考スコア(独自算出の注目度): 23.493128450672348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this work is to introduce Generalized Simplicial Attention Neural
Networks (GSANs), i.e., novel neural architectures designed to process data
defined on simplicial complexes using masked self-attentional layers. Hinging
on topological signal processing principles, we devise a series of
self-attention schemes capable of processing data components defined at
different simplicial orders, such as nodes, edges, triangles, and beyond. These
schemes learn how to weight the neighborhoods of the given topological domain
in a task-oriented fashion, leveraging the interplay among simplices of
different orders through the Dirac operator and its Dirac decomposition. We
also theoretically establish that GSANs are permutation equivariant and
simplicial-aware. Finally, we illustrate how our approach compares favorably
with other methods when applied to several (inductive and transductive) tasks
such as trajectory prediction, missing data imputation, graph classification,
and simplex prediction.
- Abstract(参考訳): 本研究の目的は、汎用単純注意ニューラルネットワーク(GSAN)、すなわち、マスク付き自己注意層を用いて単体錯体上に定義されたデータを処理するように設計された新しいニューラルネットワークを導入することである。
トポロジカルな信号処理の原則に注目しながら,ノードやエッジ,三角形など,さまざまな簡素な順序で定義されたデータコンポーネントを処理可能な一連の自己対応スキームを考案する。
これらのスキームは与えられた位相領域の近傍をタスク指向の方法で重み付けする方法を学び、ディラック作用素とそのディラック分解を通じて異なる順序の簡約間の相互作用を利用する。
また理論上は、gsan は置換同値であり、単純である。
最後に, トラジェクティブ予測, 欠落データ計算, グラフ分類, 単純予測といった, 帰納的および帰納的タスクに適用した場合のアプローチが, 他の手法とどのように比較されるかを述べる。
関連論文リスト
- Pooling Strategies for Simplicial Convolutional Networks [18.80397868603073]
本研究の目的は、単純な畳み込みニューラルネットワークのプーリング戦略を導入することである。
グラフプーリング法に着想を得て,単純なプーリング層に対する一般的な定式化を導入する。
一般的なレイヤは4つの異なるプール戦略を設計するようにカスタマイズされる。
論文 参考訳(メタデータ) (2022-10-11T14:45:51Z) - Tuning the Geometry of Graph Neural Networks [0.7614628596146599]
空間グラフ畳み込み演算子はグラフニューラルネットワーク(GNN)の成功の鍵として認識されている
このアグリゲーション作用素は実際にチューナブルであり、作用素の特定の選択 -- 従って、ジオメトリを埋め込む -- がより適切であるような明示的なレギュレーションであることが示される。
論文 参考訳(メタデータ) (2022-07-12T23:28:03Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Simplicial Attention Networks [0.0]
異なるレイヤでデータコンポーネントを処理できる適切な自己アテンションメカニズムを導入します。
与えられた位相領域の上と下の両方の近傍を、完全にタスク指向の方法で重み付けする方法を学ぶ。
提案手法は,異なるタスク(帰納的タスク,帰納的タスク)に適用した場合,他の手法と良好に比較できる。
論文 参考訳(メタデータ) (2022-03-14T20:47:31Z) - Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition [14.924672048447338]
グラフのトポロジ特性を学習するグラフ畳み込みネットワークのための新しいフレームワークを提案する。
本手法の設計原理は制約対象関数の最適化に基づいている。
骨格に基づく行動認識の課題に対して行った実験は,提案手法の優位性を示している。
論文 参考訳(メタデータ) (2021-12-06T19:43:26Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z) - GCN for HIN via Implicit Utilization of Attention and Meta-paths [104.24467864133942]
不均一情報ネットワーク(HIN)埋め込みは、HINの構造と意味情報を分散表現にマッピングすることを目的としている。
本稿では,注意とメタパスを暗黙的に活用するニューラルネットワーク手法を提案する。
まず、各層で識別集約を行う多層グラフ畳み込みネットワーク(GCN)フレームワークを用いる。
次に,アグリゲーションから分離可能な新しい伝搬操作を導入することにより,効果的な緩和と改善を行う。
論文 参考訳(メタデータ) (2020-07-06T11:09:40Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
グラフ畳み込みネットワークは、半教師付きノード分類のようなグラフベースのタスクに対処することに成功した。
本稿では,コンパクトかつタスク固有のグラフ畳み込みネットワークを自動構築する手法を提案する。
論文 参考訳(メタデータ) (2020-03-27T08:32:16Z) - Investigating the Compositional Structure Of Deep Neural Networks [1.8899300124593645]
本稿では,一方向線形活性化関数の構成構造に基づく新しい理論的枠組みを提案する。
予測ラベルと予測に使用する特定の(線形)変換の両方に関して、入力データのインスタンスを特徴付けることができる。
MNISTデータセットの予備テストでは、ニューラルネットワークの内部表現における類似性に関して、入力インスタンスをグループ化することが可能である。
論文 参考訳(メタデータ) (2020-02-17T14:16:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。