論文の概要: Deep Learning for Polycystic Kidney Disease: Utilizing Neural Networks
for Accurate and Early Detection through Gene Expression Analysis
- arxiv url: http://arxiv.org/abs/2309.03033v1
- Date: Wed, 6 Sep 2023 14:22:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 15:16:32.064757
- Title: Deep Learning for Polycystic Kidney Disease: Utilizing Neural Networks
for Accurate and Early Detection through Gene Expression Analysis
- Title(参考訳): 多嚢胞性腎臓病の深層学習 : ニューラルネットワークを用いた遺伝子発現解析による精度と早期検出
- Authors: Kapil Panda, Anirudh Mazumder
- Abstract要約: 多発性嚢胞性腎疾患(Polycystic Kidney Disease, PKD)は、腎臓の嚢胞形成による致命的な合併症を引き起こす可能性がある。
本研究では,早期疾患検出に深層学習を用いたアプローチを応用することを目的とする。
本発明のニューラルネットワークは、患者の遺伝子発現を解析することにより、患者のPKDの正確かつ堅牢な予測を実現することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With Polycystic Kidney Disease (PKD) potentially leading to fatal
complications in patients due to the formation of cysts in the kidneys, early
detection of PKD is crucial for effective management of the condition. However,
the various patient-specific factors that play a role in the diagnosis make it
an intricate puzzle for clinicians to solve. Therefore, in this study, we aim
to utilize a deep learning-based approach for early disease detection. The
devised neural network can achieve accurate and robust predictions for possible
PKD in patients by analyzing patient gene expressions.
- Abstract(参考訳): 多嚢胞性腎疾患(Polycystic Kidney Disease, PKD)は腎臓の嚢胞形成による致命的な合併症を引き起こす可能性があり, PKDの早期発見は病態の効果的な管理に不可欠である。
しかし、診断に役割を果たす様々な患者固有の要因は、臨床医にとって複雑なパズルとなる。
そこで本研究では,早期疾患検出に深層学習を応用したアプローチを提案する。
本発明のニューラルネットワークは、患者の遺伝子発現を解析することにより、患者のPKDの正確かつ堅牢な予測を実現することができる。
関連論文リスト
- Survey and Improvement Strategies for Gene Prioritization with Large Language Models [61.24568051916653]
大規模言語モデル (LLM) は, 医学検査において良好に機能しているが, 希少な遺伝疾患の診断における有効性は評価されていない。
表現型と可溶性レベルに基づいて, マルチエージェントとヒトフェノタイプオントロジー(HPO)を分類した。
ベースラインでは、GPT-4は他のLLMよりも優れており、因果遺伝子を正しくランク付けする際の精度は30%近く向上した。
論文 参考訳(メタデータ) (2025-01-30T23:03:03Z) - Machine learning for cerebral blood vessels' malformations [38.524104108347764]
脳動脈瘤と動静脈奇形は、生命を脅かす脳の血行動態である。
脳血流のパラメータは、リスクアセスメントと治療予後のための機械学習支援プロトコルに利用できる可能性がある。
論文 参考訳(メタデータ) (2024-11-25T12:58:00Z) - Integrated Machine Learning and Survival Analysis Modeling for Enhanced Chronic Kidney Disease Risk Stratification [0.0]
慢性腎疾患(CKD)は公衆衛生上の重要な課題であり、早期に発見・管理されていない場合、しばしばエンドステージ腎疾患(ESRD)へと進行する。
本稿では,機械学習技術と古典統計モデルを組み合わせて,CKDの進行をモデル化する手法を提案する。
論文 参考訳(メタデータ) (2024-11-16T09:22:06Z) - An Explainable AI Model for Predicting the Recurrence of Differentiated Thyroid Cancer [0.0]
本研究は,甲状腺癌の再発を予測するために,機械学習,特にディープラーニングモデルを用いている。
患者の臨床病理学的特徴を含むデータセットを解析することにより、トレーニング中の98%、テスト中の96%の顕著な精度を達成できた。
論文 参考訳(メタデータ) (2024-10-13T23:12:33Z) - Effect of Clinical History on Predictive Model Performance for Renal Complications of Diabetes [1.4330510916280879]
糖尿病は糖尿病性腎症の発症リスクが高いという特徴を持つ慢性疾患である。
このような合併症やその悪化のリスクを高める個人を早期に同定することは、適切な治療方針を設定する上で非常に重要である。
糖尿病患者に対する臨床関連糸球体濾過率(eGFR)閾値の交差を予測・予測するロジスティック回帰モデルを開発した。
論文 参考訳(メタデータ) (2024-09-10T20:27:00Z) - CIResDiff: A Clinically-Informed Residual Diffusion Model for Predicting Idiopathic Pulmonary Fibrosis Progression [38.14873567230233]
特発性肺線維症(IPF)は患者の死亡率に大きく相関する。
現在の臨床基準では1年間隔で2回のCT検査を必要とする疾患の進行を規定している。
そこで我々は, 患者のCT画像からIPFの進行を正確に予測する新しい拡散モデルを開発した。
論文 参考訳(メタデータ) (2024-08-01T22:01:42Z) - AI-Driven Predictive Analytics Approach for Early Prognosis of Chronic Kidney Disease Using Ensemble Learning and Explainable AI [0.2399911126932527]
慢性腎臓病(英: chronic Kidney Disease、CKD)は、腎臓の構造と機能に大きな影響を及ぼし、最終的に腎不全を引き起こす異種性疾患である。
本研究の目的は、アンサンブル学習と説明可能なAIを用いて、早期予後とCKDの検出のための支配的特徴、特徴スコア、および値の可視化である。
論文 参考訳(メタデータ) (2024-06-10T18:46:14Z) - Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
胃癌と大腸腺癌は広範囲で難治性の悪性腫瘍である。
医療コミュニティは、患者の予後を推定するための重要な指標として、5年間の生存率を受け入れている。
本研究は胃癌および大腸癌患者の生存予測モデルを改善するための先駆的アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-11T21:47:13Z) - Current and future roles of artificial intelligence in retinopathy of
prematurity [14.333209377077058]
未熟児の網膜症 (ROP) は重篤な病態である。
近年のディープラーニング(DL)、特に畳み込みニューラルネットワーク(CNN)は、ROPの検出と分類を大幅に改善している。
i-ROP 深層学習 (i-ROP-DL) システムもまた,高次疾患の検出を約束し,信頼性なROP 診断能を提供する。
論文 参考訳(メタデータ) (2024-02-15T14:35:02Z) - Sickle Cell Disease Severity Prediction from Percoll Gradient Images
using Graph Convolutional Networks [38.27767684024691]
シックル細胞病(Sickle cell disease, SCD)は、赤血球の早期破壊を引き起こす重篤な遺伝性ヘモグロビン疾患である。
提案手法は,SCD重大度予測の難問に対する最初の計算手法である。
論文 参考訳(メタデータ) (2021-09-11T21:09:50Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。