論文の概要: Data-Adaptive Graph Framelets with Generalized Vanishing Moments for
Graph Signal Processing
- arxiv url: http://arxiv.org/abs/2309.03537v2
- Date: Sat, 30 Dec 2023 09:51:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 01:45:59.154954
- Title: Data-Adaptive Graph Framelets with Generalized Vanishing Moments for
Graph Signal Processing
- Title(参考訳): グラフ信号処理のための一般化ベニシングモーメントを用いたデータ適応グラフフレームレット
- Authors: Ruigang Zheng and Xiaosheng Zhuang
- Abstract要約: 本稿では,階層的分割に基づく局所化サポート付きグラフ上でのタイトなフレームレットシステム構築のためのフレームワークを提案する。
我々の構成は、分割木に基づく非常に一般的なパラメタライズドグラフフレームレットシステムを提供する。
学習したグラフフレームレットシステムは,非線形近似および復号化タスクにおいて優れた性能を発揮することを示す。
- 参考スコア(独自算出の注目度): 2.039632659682125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel and general framework to construct tight
framelet systems on graphs with localized supports based on hierarchical
partitions. Our construction provides parametrized graph framelet systems with
great generality based on partition trees, by which we are able to find the
size of a low-dimensional subspace that best fits the low-rank structure of a
family of signals. The orthogonal decomposition of subspaces provides a key
ingredient for the definition of "generalized vanishing moments" for graph
framelets. In a data-adaptive setting, the graph framelet systems can be
learned by solving an optimization problem on Stiefel manifolds with respect to
our parameterization. Moreover, such graph framelet systems can be further
improved by solving a subsequent optimization problem on Stiefel manifolds,
aiming at providing the utmost sparsity for a given family of graph signals.
Experimental results show that our learned graph framelet systems perform
superiorly in non-linear approximation and denoising tasks.
- Abstract(参考訳): 本稿では,階層分割に基づく局所化サポートを持つグラフ上のタイトなフレームレットシステムを構築するための,新しい汎用フレームワークを提案する。
この構成は分割木に基づく大きな一般化を持つパラメトリ化されたグラフフレームレットシステムを提供し、それによって信号群の低ランク構造に最も適する低次元部分空間のサイズを見つけることができる。
部分空間の直交分解はグラフフレームレットの「一般化された消滅モーメント」の定義に重要な要素を与える。
データ適応設定において、グラフフレームレットシステムは、パラメータ化に関してスティーフェル多様体上の最適化問題を解いて得られる。
さらに、そのようなグラフフレームレットシステムは、スティーフェル多様体上のその後の最適化問題を解決し、与えられたグラフ信号の族に対して最もスパーシティを提供することを目標として、さらに改善することができる。
実験結果から,学習したグラフフレームレットシステムは非線形近似および復調タスクにおいて優れた性能を示した。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - Robust Attributed Graph Alignment via Joint Structure Learning and
Optimal Transport [26.58964162799207]
本稿では,構造化学習と最適輸送アライメントを併用した教師なしグラフアライメントフレームワークSLOTAlignを提案する。
マルチビュー構造学習を取り入れて、グラフ表現能力を高め、グラフ間で継承された構造と特徴の不整合の影響を低減する。
提案したSLOTAlignは、7つの教師なしグラフアライメント法と5つの特殊なKGアライメント法よりも優れた性能と強いロバスト性を示す。
論文 参考訳(メタデータ) (2023-01-30T08:41:36Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - How Framelets Enhance Graph Neural Networks [27.540282741523253]
本稿では,フレームレット変換に基づくグラフニューラルネットワークの組み立て手法を提案する。
本稿では,フレームレット畳み込みのための新しいアクティベーションとして,異なるスケールで高周波情報をしきい値として縮小を提案する。
論文 参考訳(メタデータ) (2021-02-13T19:19:19Z) - Promoting Graph Awareness in Linearized Graph-to-Text Generation [72.83863719868364]
局所グラフ構造を符号化する線形化モデルの能力を検討する。
本研究は,モデルの暗黙のグラフ符号化の品質を高めるための解法である。
これらの消音足場は、低リソース設定における下流生成の大幅な改善につながることが分かりました。
論文 参考訳(メタデータ) (2020-12-31T18:17:57Z) - Decimated Framelet System on Graphs and Fast G-Framelet Transforms [3.7277730514654555]
グラフ構造データに対する統計的あるいは機械学習モデルの学習性能には,グラフデータの適切な表現が不可欠である。
本稿では,グラフ上に局所化されたタイトフレームを形成するデシメーテッドフレームレットと呼ばれる,グラフデータのための新しい多スケール表現システムを提案する。
この効果は、トラフィックネットワークのマルチレゾリューション分析やグラフ分類タスクのグラフニューラルネットワークなど、現実世界のアプリケーションで実証されている。
論文 参考訳(メタデータ) (2020-12-12T23:57:17Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z) - Homology-Preserving Multi-Scale Graph Skeletonization Using Mapper on
Graphs [5.86893539706548]
本稿では、トポロジカルデータ解析の一般的なツールであるmapper構築をグラフ視覚化に適用することを提案する。
我々は,グラフのホモロジー保存骨格を生成するモグ (mog) と呼ばれる,重み付けされた非方向グラフを対象とするマッパー構成のバリエーションを開発する。
我々は,このような骨格のインタラクティブな探索を可能にするソフトウェアツールを提供し,本手法の合成および実世界のデータに対する有効性を実証する。
論文 参考訳(メタデータ) (2018-04-03T19:18:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。