論文の概要: Algebra and Geometry of Camera Resectioning
- arxiv url: http://arxiv.org/abs/2309.04028v1
- Date: Thu, 7 Sep 2023 21:53:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 16:35:04.449370
- Title: Algebra and Geometry of Camera Resectioning
- Title(参考訳): カメラ切除の代数と幾何学
- Authors: Erin Connelly, Timothy Duff, Jessie Loucks-Tavitas
- Abstract要約: カメラ切断問題に関連する代数多様体について検討する。
我々は、カメラポイントの双対性に関連するコンピュータビジョンにおける有望な結果を導出し、再解釈する。
- 参考スコア(独自算出の注目度): 2.915868985330569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study algebraic varieties associated with the camera resectioning problem.
We characterize these resectioning varieties' multigraded vanishing ideals
using Gr\"obner basis techniques. As an application, we derive and re-interpret
celebrated results in geometric computer vision related to camera-point
duality. We also clarify some relationships between the classical problems of
optimal resectioning and triangulation, state a conjectural formula for the
Euclidean distance degree of the resectioning variety, and discuss how this
conjecture relates to the recently-resolved multiview conjecture.
- Abstract(参考訳): カメラ切断問題に関連する代数多様体について検討する。
Gr\"オブナーベース手法を用いて、これらの分類多様体の多階退化イデアルを特徴づける。
応用として、カメラポイントの双対性に関連する幾何学的コンピュータビジョンにおける有望な結果を導出し、再解釈する。
また, 最適切除と三角測量に関する古典的問題と, 切除多様体のユークリッド距離次数の仮定式との関係を明らかにし, この予想が最近解決されたマルチビュー予想とどのように関係しているかを考察した。
関連論文リスト
- A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
本稿ではReLUのような非微分可能活性化関数の事例について検討する。
最近の2つの研究は、ニューラルネットワークを研究するための幾何学的枠組みを導入した。
本稿では,画像の分類と熱力学問題に関する数値実験を行った。
論文 参考訳(メタデータ) (2024-04-09T08:11:46Z) - Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images [56.86175251327466]
本稿では,幾何学的文脈を取り入れつつ,画像から深度や表面正規度などの測地を学習するための新しい手法を提案する。
提案手法は,入力画像に存在する幾何学的変動を符号化した幾何学的文脈を抽出し,幾何的制約と深度推定を相関付ける。
本手法は,画像から高品質な3次元形状を生成可能な密着型フレームワーク内での深度と表面の正規分布推定を統一する。
論文 参考訳(メタデータ) (2024-02-08T17:57:59Z) - Physics-Informed Graph Convolutional Networks: Towards a generalized
framework for complex geometries [0.0]
偏微分方程式の解法としてグラフニューラルネットワークを用いることを正当化する。
古典的数値解法と物理インフォームド・フレームワークを組み合わせることで、別の手法を提案する。
本稿では,不規則な幾何学上の3次元問題に対して検証を行う手法を提案する。
論文 参考訳(メタデータ) (2023-10-20T09:46:12Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
Fisher-Rao情報幾何学は、ツールを微分幾何学から活用することができる。
楕円分布の枠組みにおけるこれらの幾何学的ツールの実用的利用について述べる。
論文 参考訳(メタデータ) (2023-10-02T09:23:32Z) - Curved Geometric Networks for Visual Anomaly Recognition [39.91252195360767]
データ分布の根底にある性質を理解するために潜伏埋め込みを学ぶことは、曲率ゼロのユークリッド空間でしばしば定式化される。
本研究では,データ中の異常やアウト・オブ・ディストリビューション・オブジェクトを解析するための曲線空間の利点について検討する。
論文 参考訳(メタデータ) (2022-08-02T01:15:39Z) - Geometric Methods for Sampling, Optimisation, Inference and Adaptive
Agents [102.42623636238399]
我々は,サンプリング,最適化,推論,適応的意思決定といった問題に根ざした基本的な幾何学的構造を同定する。
これらの問題を効率的に解くためにこれらの幾何学的構造を利用するアルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-03-20T16:23:17Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
ディープニューラルネットワークは、音声認識、機械翻訳、画像解析など、いくつかの科学領域で複雑な問題を解決するために広く使われている。
我々は、リーマン計量を備えた列の最後の多様体で、多様体間の写像の特定の列を研究する。
このようなシーケンスのマップの理論的性質について検討し、最終的に実践的な関心を持つニューラルネットワークの実装間のマップのケースに焦点を当てる。
論文 参考訳(メタデータ) (2021-12-17T11:43:30Z) - On Geometric Connections of Embedded and Quotient Geometries in
Riemannian Fixed-rank Matrix Optimization [5.876141028192136]
本稿では,埋め込みおよび商測地の下でのリーマン最適化問題の幾何学的ランドスケープ接続を確立するための一般的な手順を提案する。
固定ランク行列最適化において,特定のリーマン測度を持つ2つの測度間のアルゴリズム的接続を観測する。
結果は、文学における未回答の疑問に対して、いくつかの新しい理論的洞察を与える。
論文 参考訳(メタデータ) (2021-10-23T03:13:56Z) - Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization [8.59387261480044]
我々は、広く研究された多様体の幾何学的地形接続と、低ランク正半定値(PSD)および一般行列最適化における分解公式を考える。
サンドイッチ関係は、ある定式化から別の定式化へのより定量的な幾何学的性質の伝達に利用できることを示す。
論文 参考訳(メタデータ) (2021-08-03T22:14:01Z) - Hybrid neural network reduced order modelling for turbulent flows with
geometric parameters [0.0]
本稿では,幾何的パラメータ化不可能な乱流Navier-Stokes問題の解法として,古典的ガレルキン射影法とデータ駆動法を併用して,多目的かつ高精度なアルゴリズムを提案する。
本手法の有効性は,古典学のバックステップ問題と形状変形Ahmed体応用の2つの異なるケースで実証された。
論文 参考訳(メタデータ) (2021-07-20T16:06:18Z) - Isometric Multi-Shape Matching [50.86135294068138]
形状間の対応を見つけることは、コンピュータビジョンとグラフィックスの基本的な問題である。
アイソメトリーは形状対応問題においてしばしば研究されるが、マルチマッチング環境では明確には考慮されていない。
定式化を解くのに適した最適化アルゴリズムを提案し,コンバージェンスと複雑性解析を提供する。
論文 参考訳(メタデータ) (2020-12-04T15:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。