論文の概要: Physics-Informed Graph Convolutional Networks: Towards a generalized
framework for complex geometries
- arxiv url: http://arxiv.org/abs/2310.14948v4
- Date: Fri, 24 Nov 2023 13:33:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 02:49:10.524354
- Title: Physics-Informed Graph Convolutional Networks: Towards a generalized
framework for complex geometries
- Title(参考訳): 物理インフォームドグラフ畳み込みネットワーク:複素幾何学の一般化フレームワークを目指して
- Authors: Marien Chenaud, Jos\'e Alves, Fr\'ed\'eric Magoul\`es
- Abstract要約: 偏微分方程式の解法としてグラフニューラルネットワークを用いることを正当化する。
古典的数値解法と物理インフォームド・フレームワークを組み合わせることで、別の手法を提案する。
本稿では,不規則な幾何学上の3次元問題に対して検証を行う手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Since the seminal work of [9] and their Physics-Informed neural networks
(PINNs), many efforts have been conducted towards solving partial differential
equations (PDEs) with Deep Learning models. However, some challenges remain,
for instance the extension of such models to complex three-dimensional
geometries, and a study on how such approaches could be combined to classical
numerical solvers. In this work, we justify the use of graph neural networks
for these problems, based on the similarity between these architectures and the
meshes used in traditional numerical techniques for solving partial
differential equations. After proving an issue with the Physics-Informed
framework for complex geometries, during the computation of PDE residuals, an
alternative procedure is proposed, by combining classical numerical solvers and
the Physics-Informed framework. Finally, we propose an implementation of this
approach, that we test on a three-dimensional problem on an irregular geometry.
- Abstract(参考訳): 9]とその物理情報ニューラルネットワーク(PINN)のセミナル研究以来、ディープラーニングモデルを用いた偏微分方程式(PDE)の解法に多くの取り組みがなされてきた。
しかし、複雑な3次元幾何学へのモデルの拡張や、そのようなアプローチが古典的数値解法とどのように結合できるかの研究など、いくつかの課題は残っている。
本研究では,偏微分方程式の解法として従来の数値計算手法で用いられるメッシュと,これらのアーキテクチャの類似性に基づいて,これらの問題に対するグラフニューラルネットワークの利用を正当化する。
複素幾何学における物理インフォームドフレームワークの問題点を証明した後、古典的数値解法と物理インフォームドフレームワークを組み合わせることで、PDE残差の計算において別の方法を提案する。
最後に,この手法の実装を提案し,不規則な幾何学上の3次元問題について検証する。
関連論文リスト
- Physics-Informed Graph-Mesh Networks for PDEs: A hybrid approach for complex problems [0.24578723416255746]
物理インフォームドグラフニューラルネットワークと有限要素からの数値カーネルを組み合わせたハイブリッドアプローチを提案する。
モデルの理論的性質を研究した後、2次元と3次元の複素幾何学に応用する。
我々の選択はアブレーション研究によって支持され,提案手法の一般化能力を評価する。
論文 参考訳(メタデータ) (2024-09-25T07:52:29Z) - A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems [0.0]
本研究は、複雑な物理系を管理する時間領域偏微分方程式(PDE)の数値解析を高速化するための新しいアプローチを導入する。
この手法は、古典的低次モデリング(ROM)フレームワークと最近のパラメトリックグラフニューラルネットワーク(GNN)の組み合わせに基づいている。
論文 参考訳(メタデータ) (2024-06-03T08:51:25Z) - Separable Physics-Informed Neural Networks for the solution of
elasticity problems [0.0]
深部エネルギー法(DEM)と連動して、分離可能な物理情報ニューラルネットワーク(SPINN)に基づく弾性問題の解法を提案する。
数値実験により、この手法はバニラ物理情報ニューラルネットワーク(PINN)やSPINNよりもはるかに高い収束率と精度を有することが示された。
論文 参考訳(メタデータ) (2024-01-24T14:34:59Z) - Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
パラメトリゼーションを必要とせず, 種々の測地における定常ナビエ-ストークス方程式の近似解を学習する手法を提案する。
物理を意識したCNNの結果は、最先端のデータベースアプローチと比較される。
論文 参考訳(メタデータ) (2023-08-04T05:09:06Z) - Graph Neural Networks for Airfoil Design [0.0]
本研究では,異なる翼上での2次元定常なナビエ・ストークス方程式の解を近似する作業に,既知のアーキテクチャを適応させることを提案する。
この研究は、産業測地上の3次元定常解を近似することを目的とした、より長いプロジェクトで行われる。
論文 参考訳(メタデータ) (2023-05-09T14:15:55Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。