i-QLS: Quantum-supported Algorithm for Least Squares Optimization in Non-Linear Regression
- URL: http://arxiv.org/abs/2505.02788v1
- Date: Mon, 05 May 2025 17:02:35 GMT
- Title: i-QLS: Quantum-supported Algorithm for Least Squares Optimization in Non-Linear Regression
- Authors: Supreeth Mysore Venkatesh, Antonio Macaluso, Diego Arenas, Matthias Klusch, Andreas Dengel,
- Abstract summary: We propose an iterative quantum-assisted least squares (i-QLS) optimization method.<n>We overcome the scalability and precision limitations of prior quantum least squares approaches.<n> Experiments confirm that i-QLS enables near-term quantum hardware to perform regression tasks with improved precision and scalability.
- Score: 4.737806718785056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an iterative quantum-assisted least squares (i-QLS) optimization method that leverages quantum annealing to overcome the scalability and precision limitations of prior quantum least squares approaches. Unlike traditional QUBO-based formulations, which suffer from a qubit overhead due to fixed discretization, our approach refines the solution space iteratively, enabling exponential convergence while maintaining a constant qubit requirement per iteration. This iterative refinement transforms the problem into an anytime algorithm, allowing for flexible computational trade-offs. Furthermore, we extend our framework beyond linear regression to non-linear function approximation via spline-based modeling, demonstrating its adaptability to complex regression tasks. We empirically validate i-QLS on the D-Wave quantum annealer, showing that our method efficiently scales to high-dimensional problems, achieving competitive accuracy with classical solvers while outperforming prior quantum approaches. Experiments confirm that i-QLS enables near-term quantum hardware to perform regression tasks with improved precision and scalability, paving the way for practical quantum-assisted machine learning applications.
Related papers
- Gate Freezing Method for Gradient-Free Variational Quantum Algorithms in Circuit Optimization [0.0]
Quantum circuits (PQCs) are key components of variational quantum algorithms (VQAs)<n>PQCs enable flexible encoding of quantum information through quantum gates and have been successfully applied across domains such as quantum chemistry, optimization, and quantum machine learning.<n>Despite their potential, PQC performance on NISQ hardware is hindered by noise, decoherence, and the presence of barren plateaus, which can impede gradient-based optimization.
arXiv Detail & Related papers (2025-07-10T13:22:31Z) - Quantum-Classical Hybrid Quantized Neural Network [7.759760132559044]
We present a novel Quadratic Binary Optimization (QBO) model for quantized neural network training, enabling the use of arbitrary activation and loss functions.<n>We employ the Quantum Gradient Conditional Descent (QCGD) algorithm, which leverages quantum computing to directly solve the QCBO problem.<n> Experimental results using a coherent Ising machine (CIM) demonstrate a 94.95% accuracy on the Fashion MNIST classification task, with only 1.1-bit precision.
arXiv Detail & Related papers (2025-06-23T02:12:36Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Learning Parameterized Quantum Circuits with Quantum Gradient [8.64967968665265]
We introduce a nested optimization model that leverages quantum gradient to enhance PQC learning for gradient-type cost functions.
Our approach utilizes quantum algorithms to identify and overcome a type of gradient vanishing-a persistent challenge in PQC learning.
arXiv Detail & Related papers (2024-09-30T07:50:47Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Preconditioning for a Variational Quantum Linear Solver [0.0]
We numerically demonstrate a notable reduction in the required ansatz depth, demonstrating that preconditioning is useful for quantum algorithms.
Our findings suggest that combining classical computing techniques, such as preconditioning, with quantum algorithms can significantly enhance the performance of NISQ algorithms.
arXiv Detail & Related papers (2023-12-25T08:50:22Z) - Hybrid algorithm simulating non-equilibrium steady states of an open
quantum system [10.752869788647802]
Non-equilibrium steady states are a focal point of research in the study of open quantum systems.
Previous variational algorithms for searching these steady states have suffered from resource-intensive implementations.
We present a novel variational quantum algorithm that efficiently searches for non-equilibrium steady states by simulating the operator-sum form of the Lindblad equation.
arXiv Detail & Related papers (2023-09-13T01:57:27Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.