論文の概要: Explaining Search Result Stances to Opinionated People
- arxiv url: http://arxiv.org/abs/2309.08460v1
- Date: Fri, 15 Sep 2023 15:08:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 14:10:48.967868
- Title: Explaining Search Result Stances to Opinionated People
- Title(参考訳): 投票者に対する検索結果スタンスの説明
- Authors: Z. Wu, T. Draws, F. Cau, F. Barile, A. Rieger, N. Tintarev
- Abstract要約: スタンスラベルとその説明が、ユーザーがより多様な検索結果を消費するのに役立つかどうかを検討する。
スタンスラベルや説明が、より多様な検索結果の消費につながることがわかりました。
しかし、この文脈では、ユーザ間で体系的な意見変化の証拠は見つからない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: People use web search engines to find information before forming opinions,
which can lead to practical decisions with different levels of impact. The
cognitive effort of search can leave opinionated users vulnerable to cognitive
biases, e.g., the confirmation bias. In this paper, we investigate whether
stance labels and their explanations can help users consume more diverse search
results. We automatically classify and label search results on three topics
(i.e., intellectual property rights, school uniforms, and atheism) as against,
neutral, and in favor, and generate explanations for these labels. In a user
study (N =203), we then investigate whether search result stance bias (balanced
vs biased) and the level of explanation (plain text, label only, label and
explanation) influence the diversity of search results clicked. We find that
stance labels and explanations lead to a more diverse search result
consumption. However, we do not find evidence for systematic opinion change
among users in this context. We believe these results can help designers of
search engines to make more informed design decisions.
- Abstract(参考訳): 人々はウェブ検索エンジンを使って意見を形成する前に情報を見つける。
検索の認知的努力は、認識バイアス(例えば、確認バイアス)に弱い意見のあるユーザーを残すことができる。
本稿では,スタンスラベルとその説明が,ユーザがより多様な検索結果を消費するのに役立つかどうかを検討する。
3つのトピック(知的財産権、学校制服、無神論)について検索結果を、反対、中立、好意として自動的に分類し、これらのラベルの説明を生成する。
ユーザスタディ(N=203)では,検索結果のバイアス(バランスとバイアス)と説明のレベル(平文,ラベルのみ,ラベルと説明)が,クリックした検索結果の多様性に影響を及ぼすかを検討する。
スタンスラベルや説明がより多様な検索結果の消費につながることがわかりました。
しかし,この文脈では,ユーザ間の系統的意見変化の証拠は見出されていない。
これらの結果は、検索エンジンの設計者がより深い設計決定を下すのに役立つと信じている。
関連論文リスト
- Investigating Bias in Political Search Query Suggestions by Relative Comparison with LLMs [1.5356574175312299]
検索クエリの提案のバイアスは、バイアスされた検索結果に露出し、意見の形成に影響を与える可能性がある。
我々は、英語の検索クエリー提案において、バイアスを特定し定量化するために、多段階のアプローチを用いる。
われわれのアプローチを米国の政治ニュース分野に適用し、GoogleとBingの偏見を比較する。
論文 参考訳(メタデータ) (2024-10-31T12:40:38Z) - Navigating the Thin Line: Examining User Behavior in Search to Detect
Engagement and Backfire Effects [0.0]
本研究では,様々なバイアス指標と検索結果の提示が,意見のあるユーザの多様性消費と検索行動に影響を及ぼすかどうかを検討する。
以上の結果から,参加者が(対人偏見の)検索結果に偏りを抱くことで,コンテンツに対する態度が向上することが示唆された。
また, 偏見は, 検索ページ内のインタラクションの全体的な減少傾向と関連していることがわかった。
論文 参考訳(メタデータ) (2024-01-20T10:28:25Z) - Algorithmic amplification of biases on Google Search [0.6167267484484484]
本稿では,個人の既存態度が現代の情報探索プロセスにどのように影響するかを考察する。
中絶に対する反対の態度を持つ個人は、異なる検索結果を受け取る。
Google検索エンジンは、検索結果の既存の信念を強化する。
論文 参考訳(メタデータ) (2024-01-17T08:24:57Z) - Examining bias perpetuation in academic search engines: an algorithm
audit of Google and Semantic Scholar [0.0]
本研究では,Google Scholar と Semantic Scholar に誘導される確認バイアスクエリが,スキュー結果をもたらすかどうかを検討する。
技術関連のクエリは、より大きな相違を示す。
検証バイアスが永久に続く学術的な検索結果は、研究者と市民の両方が証拠を探していることに強い意味を持つ。
論文 参考訳(メタデータ) (2023-11-16T15:43:31Z) - User Attitudes to Content Moderation in Web Search [49.1574468325115]
我々は、Web検索における誤解を招く可能性のあるコンテンツや攻撃的なコンテンツに適用される様々なモデレーションプラクティスに対するサポートレベルについて検討する。
最も支持されている実践は、誤解を招く可能性のあるコンテンツや不快なコンテンツについてユーザーに知らせることであり、最も支持されていないものは、検索結果を完全に削除することである。
より保守的なユーザーやウェブ検索結果に対する信頼度が低いユーザーは、ウェブ検索におけるコンテンツモデレーションに反する傾向にある。
論文 参考訳(メタデータ) (2023-10-05T10:57:15Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
本研究では,アノテータのアイデンティティ(誰)と信念(なぜ)が有害な言語アノテーションに与える影響について検討する。
我々は、アンチブラック言語、アフリカ系アメリカ人の英語方言、俗語という3つの特徴を持つポストを考察する。
以上の結果から,アノテータのアイデンティティと信念と毒性評価の相関が強く示唆された。
論文 参考訳(メタデータ) (2021-11-15T18:58:20Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - The Matter of Chance: Auditing Web Search Results Related to the 2020
U.S. Presidential Primary Elections Across Six Search Engines [68.8204255655161]
私たちは、Google、Baidu、Bing、DuckDuckGo、Yahoo、Yandexの"US Election"、"Donald trump"、"Joe Biden"、"bernie Sanders"の検索結果を調べます。
その結果, 検索エンジン間の検索結果と, エージェント間の検索結果の相違が有意な差があることが示唆された。
論文 参考訳(メタデータ) (2021-05-03T11:18:19Z) - Information Consumption and Social Response in a Segregated Environment:
the Case of Gab [74.5095691235917]
この研究は、COVID-19トピックに関するGab内のインタラクションパターンの特徴を提供する。
疑わしい、信頼できるコンテンツに対する社会的反応には、統計的に強い違いはない。
本研究は,協調した不正確な行動の理解と情報操作の早期警戒に関する知見を提供する。
論文 参考訳(メタデータ) (2020-06-03T11:34:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。