S-QGPU: Shared Quantum Gate Processing Unit for Distributed Quantum Computing
- URL: http://arxiv.org/abs/2309.08736v3
- Date: Tue, 01 Oct 2024 16:43:11 GMT
- Title: S-QGPU: Shared Quantum Gate Processing Unit for Distributed Quantum Computing
- Authors: Shengwang Du, Yufei Ding, Chunming Qiao,
- Abstract summary: We propose a distributed quantum computing architecture in which individual small-sized quantum computers are connected to a shared quantum gate processing unit.
The S-QGPU comprises a collection of hybrid two-qubit gate modules for remote gate operations.
- Score: 22.22578354426069
- License:
- Abstract: We propose a distributed quantum computing (DQC) architecture in which individual small-sized quantum computers are connected to a shared quantum gate processing unit (S-QGPU). The S-QGPU comprises a collection of hybrid two-qubit gate modules for remote gate operations. In contrast to conventional DQC systems, where each quantum computer is equipped with dedicated communication qubits, S-QGPU effectively pools the resources (e.g., the communication qubits) together for remote gate operations, and thus significantly reduces the cost of not only the local quantum computers but also the overall distributed system. Our preliminary analysis and simulation show that S-QGPU's shared resources for remote gate operations enable efficient resource utilization. When not all computing qubits (also called data qubits) in the system require simultaneous remote gate operations, S-QGPU-based DQC architecture demands fewer communication qubits, further decreasing the overall cost. Alternatively, with the same number of communication qubits, it can support a larger number of simultaneous remote gate operations more efficiently, especially when these operations occur in a burst mode.
Related papers
- Universal distributed blind quantum computing with solid-state qubits [0.0]
Blind quantum computing is a promising application of distributed quantum systems.
We experimentally demonstrate a universal quantum gate set consisting of single- and two-qubit blind gates over a distributed two-node network.
We perform a distributed algorithm with blind operations across our two-node network, paving the way towards blind quantum computation with matter qubits in distributed, modular architectures.
arXiv Detail & Related papers (2024-12-04T04:13:46Z) - Elementary Quantum Arithmetic Logic Units for Near-Term Quantum Computers [0.0]
We propose feasible quantum arithmetic logic units (QALUs) for near-term quantum computers with qubits arranged in two-dimensional arrays.
We introduce a feasible quantum arithmetic operation to compute the two's complement representation of signed integers.
Our work demonstrates a viable implementation of QALUs on near-term quantum computers, advancing towards scalable and resource-efficient quantum arithmetic operations.
arXiv Detail & Related papers (2024-08-13T01:49:58Z) - Distributed Quantum Computing across an Optical Network Link [0.0]
We experimentally demonstrate the distribution of quantum computations between two photonically interconnected trapped-ion modules.
We deterministically teleport a controlled-Z gate between two circuit qubits in separate modules, achieving 86% fidelity.
As photons can be interfaced with a variety of systems, this technique has applications extending beyond trapped-ion quantum computers.
arXiv Detail & Related papers (2024-06-30T21:32:10Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Applying an Evolutionary Algorithm to Minimize Teleportation Costs in Distributed Quantum Computing [3.0846297887400977]
A quantum communication network can be formed by connecting multiple quantum computers (QCs) through classical and quantum channels.
In distributed quantum computing, QCs collectively perform a quantum computation.
In this paper, we propose an evolutionary algorithm for this problem.
arXiv Detail & Related papers (2023-11-30T13:10:28Z) - A Modular Quantum Compilation Framework for Distributed Quantum
Computing [0.0]
Distributed Quantum Computing is a scalable approach for increasing the number of available qubits for computational tasks.
We present a modular quantum compilation framework for DQC that takes into account both network and device constraints.
We also devised a strategy for remote scheduling that can exploit both TeleGate and TeleData operations.
arXiv Detail & Related papers (2023-05-04T16:13:23Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.