Efficient Core-selecting Incentive Mechanism for Data Sharing in
Federated Learning
- URL: http://arxiv.org/abs/2309.11722v2
- Date: Tue, 26 Sep 2023 04:02:29 GMT
- Title: Efficient Core-selecting Incentive Mechanism for Data Sharing in
Federated Learning
- Authors: Mengda Ji, Genjiu Xu, Jianjun Ge, Mingqiang Li
- Abstract summary: Federated learning is a distributed machine learning system that uses participants' data to train an improved global model.
How to establish an incentive mechanism that both incentivizes inputting data truthfully and promotes stable cooperation has become an important issue to consider.
We propose an efficient core-selecting mechanism based on sampling approximation that only aggregates models on sampled coalitions to approximate the exact result.
- Score: 0.12289361708127873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a distributed machine learning system that uses
participants' data to train an improved global model. In federated learning,
participants cooperatively train a global model, and they will receive the
global model and payments. Rational participants try to maximize their
individual utility, and they will not input their high-quality data truthfully
unless they are provided with satisfactory payments based on their data
quality. Furthermore, federated learning benefits from the cooperative
contributions of participants. Accordingly, how to establish an incentive
mechanism that both incentivizes inputting data truthfully and promotes stable
cooperation has become an important issue to consider. In this paper, we
introduce a data sharing game model for federated learning and employ
game-theoretic approaches to design a core-selecting incentive mechanism by
utilizing a popular concept in cooperative games, the core. In federated
learning, the core can be empty, resulting in the core-selecting mechanism
becoming infeasible. To address this, our core-selecting mechanism employs a
relaxation method and simultaneously minimizes the benefits of inputting false
data for all participants. However, this mechanism is computationally expensive
because it requires aggregating exponential models for all possible coalitions,
which is infeasible in federated learning. To address this, we propose an
efficient core-selecting mechanism based on sampling approximation that only
aggregates models on sampled coalitions to approximate the exact result.
Extensive experiments verify that the efficient core-selecting mechanism can
incentivize inputting high-quality data and stable cooperation, while it
reduces computational overhead compared to the core-selecting mechanism.
Related papers
- FedSPD: A Soft-clustering Approach for Personalized Decentralized Federated Learning [18.38030098837294]
Federated learning is a framework for distributed clients to collaboratively train a machine learning model using local data.
We propose FedSPD, an efficient personalized federated learning algorithm for the decentralized setting.
We show that FedSPD learns accurate models even in low-connectivity networks.
arXiv Detail & Related papers (2024-10-24T15:48:34Z) - Serverless Federated AUPRC Optimization for Multi-Party Collaborative
Imbalanced Data Mining [119.89373423433804]
Area Under Precision-Recall (AUPRC) was introduced as an effective metric.
Serverless multi-party collaborative training can cut down the communications cost by avoiding the server node bottleneck.
We propose a new ServerLess biAsed sTochastic gradiEnt (SLATE) algorithm to directly optimize the AUPRC.
arXiv Detail & Related papers (2023-08-06T06:51:32Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
For a federated learning model to perform well, it is crucial to have a diverse and representative dataset.
We show that the statistical criterion used to quantify the diversity of the data, as well as the choice of the federated learning algorithm used, has a significant effect on the resulting equilibrium.
We leverage this to design simple optimal federated learning mechanisms that encourage data collectors to contribute data representative of the global population.
arXiv Detail & Related papers (2023-06-08T23:38:25Z) - FedGrad: Optimisation in Decentralised Machine Learning [0.0]
Federated learning is a machine learning paradigm where we aim to train machine learning models in a distributed fashion.
We propose yet another adaptive federated optimization method and some other ideas in the field of federated learning.
arXiv Detail & Related papers (2022-11-07T15:07:56Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Mechanisms that Incentivize Data Sharing in Federated Learning [90.74337749137432]
We show how a naive scheme leads to catastrophic levels of free-riding where the benefits of data sharing are completely eroded.
We then introduce accuracy shaping based mechanisms to maximize the amount of data generated by each agent.
arXiv Detail & Related papers (2022-07-10T22:36:52Z) - Incentivizing Federated Learning [2.420324724613074]
This paper presents an incentive mechanism that encourages clients to contribute as much data as they can obtain.
Unlike previous incentive mechanisms, our approach does not monetize data.
We theoretically prove that clients will use as much data as they can possibly possess to participate in federated learning under certain conditions.
arXiv Detail & Related papers (2022-05-22T23:02:43Z) - Trading Data For Learning: Incentive Mechanism For On-Device Federated
Learning [25.368195601622688]
Federated Learning rests on the notion of training a global model distributedly on various devices.
Under this setting, users' devices perform computations on their own data and then share the results with the cloud server to update the global model.
The users suffer from privacy leakage of their local data during the federated model training process.
We propose an effective incentive mechanism, which selects users that are most likely to provide reliable data and compensates for their costs of privacy leakage.
arXiv Detail & Related papers (2020-09-11T18:37:58Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.