論文の概要: Turbulence in Focus: Benchmarking Scaling Behavior of 3D Volumetric
Super-Resolution with BLASTNet 2.0 Data
- arxiv url: http://arxiv.org/abs/2309.13457v1
- Date: Sat, 23 Sep 2023 18:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 19:44:12.433486
- Title: Turbulence in Focus: Benchmarking Scaling Behavior of 3D Volumetric
Super-Resolution with BLASTNet 2.0 Data
- Title(参考訳): blastnet 2.0データを用いた3次元ボリューム分解能のベンチマークスケーリング挙動
- Authors: Wai Tong Chung, Bassem Akoush, Pushan Sharma, Alex Tamkin, Ki Sung
Jung, Jacqueline Chen, Jack Guo, Davy Brouzet, Mohsen Talei, Bruno Savard,
Alexei Y Poludnenko, Matthias Ihme
- Abstract要約: 圧縮性乱流の解析は、推進、エネルギー発生、環境に関する応用に不可欠である。
我々は34個の高忠実度直接数値シミュレーションから744個のフルドメインのサンプルを含む2.2TBのデータセットネットワークを提案する。
3次元超解像のための5つのディープラーニングアプローチの合計49種類のバリエーションをベンチマークする。
- 参考スコア(独自算出の注目度): 4.216848651040705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analysis of compressible turbulent flows is essential for applications
related to propulsion, energy generation, and the environment. Here, we present
BLASTNet 2.0, a 2.2 TB network-of-datasets containing 744 full-domain samples
from 34 high-fidelity direct numerical simulations, which addresses the current
limited availability of 3D high-fidelity reacting and non-reacting compressible
turbulent flow simulation data. With this data, we benchmark a total of 49
variations of five deep learning approaches for 3D super-resolution - which can
be applied for improving scientific imaging, simulations, turbulence models, as
well as in computer vision applications. We perform neural scaling analysis on
these models to examine the performance of different machine learning (ML)
approaches, including two scientific ML techniques. We demonstrate that (i)
predictive performance can scale with model size and cost, (ii) architecture
matters significantly, especially for smaller models, and (iii) the benefits of
physics-based losses can persist with increasing model size. The outcomes of
this benchmark study are anticipated to offer insights that can aid the design
of 3D super-resolution models, especially for turbulence models, while this
data is expected to foster ML methods for a broad range of flow physics
applications. This data is publicly available with download links and browsing
tools consolidated at https://blastnet.github.io.
- Abstract(参考訳): 圧縮性乱流の解析は、推進、エネルギー発生、環境に関する応用に不可欠である。
本稿では,34個の高忠実度直接数値シミュレーションから得られた744個のフルドメインサンプルを含む2.2tbのネットワーク・オブ・データセットである blastnet 2.0 について述べる。
このデータを用いて,3次元超解像のための5つのディープラーニングアプローチの49種類のバリエーションをベンチマークし,科学画像,シミュレーション,乱流モデル,コンピュータビジョンの応用に応用できることを示した。
これらのモデルを用いてニューラルスケーリング分析を行い、2つの科学的ML技術を含む異なる機械学習(ML)アプローチの性能を調べる。
私たちはそれを証明します
(i)予測性能はモデルのサイズとコストでスケールできる。
(ii)建築は、特に小型モデルにおいて著しく重要であり、
(iii)モデルサイズが大きくなると、物理学的損失の利点が持続する。
本研究の結果は3次元超解像モデル,特に乱流モデルの設計に役立つ知見を提供するとともに,幅広い流れ物理応用のためのML手法の育成が期待されている。
このデータは、https://blastnet.github.ioで統合されたダウンロードリンクとブラウジングツールで公開されている。
関連論文リスト
- Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
本稿では,メッシュ領域上での定常流体力学シミュレーションの代理モデルを学習する手法を提案する。
提案したモデルは, 異なる流れ条件に対して非構造領域に直接適用することができる。
顕著なことに、RANS超音速翼データセット上の高忠実度解法よりも5桁高速な推論を行うことができる。
論文 参考訳(メタデータ) (2024-07-29T11:48:44Z) - SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation [83.18930314027254]
表現的人間のポーズと形状推定(EHPS)は、身体、手、顔の動きを多数の応用で統合する。
本研究では,VT-Huge をバックボーンとする第1次一般基礎モデル (SMPLer-X) に向けた EHPS のスケールアップについて検討する。
ビッグデータと大規模モデルにより、SMPLer-Xは、さまざまなテストベンチマークにまたがる強力なパフォーマンスと、目に見えない環境への優れた転送性を示す。
論文 参考訳(メタデータ) (2023-09-29T17:58:06Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - CROMOSim: A Deep Learning-based Cross-modality Inertial Measurement
Simulator [7.50015216403068]
慣性測定装置 (IMU) のデータは, 人体移動の監視と評価に利用されてきた。
データ不足を緩和するため,クロスモーダルセンサシミュレータであるCROMOSimを設計した。
モーションキャプチャシステムや単眼RGBカメラから高忠実度仮想IMUセンサーデータをシミュレートする。
論文 参考訳(メタデータ) (2022-02-21T22:30:43Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
物理制約付き深層学習モデルを構築し, 多相多孔質体における多相流の解法について検討した。
モデルは物理に基づくシミュレーションデータから訓練され、物理過程をエミュレートする。
このモデルは物理シミュレーションと比較して1400倍のスピードアップで予測を行う。
論文 参考訳(メタデータ) (2021-04-30T02:15:01Z) - Turbulence Enrichment using Physics-informed Generative Adversarial
Networks [0.0]
我々は乱流生成法を開発した。
損失関数の修正による物理インフォームド・ラーニング・アプローチを取り入れた。
物理インフォームドラーニングを用いることで、物理支配方程式を満たすデータを生成する際のモデルの能力が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-03-04T06:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。