Turbulence in Focus: Benchmarking Scaling Behavior of 3D Volumetric
Super-Resolution with BLASTNet 2.0 Data
- URL: http://arxiv.org/abs/2309.13457v3
- Date: Fri, 27 Oct 2023 18:39:34 GMT
- Title: Turbulence in Focus: Benchmarking Scaling Behavior of 3D Volumetric
Super-Resolution with BLASTNet 2.0 Data
- Authors: Wai Tong Chung, Bassem Akoush, Pushan Sharma, Alex Tamkin, Ki Sung
Jung, Jacqueline H. Chen, Jack Guo, Davy Brouzet, Mohsen Talei, Bruno Savard,
Alexei Y. Poludnenko, Matthias Ihme
- Abstract summary: Analysis of compressible turbulent flows is essential for applications related to propulsion, energy generation, and the environment.
We present a 2.2 TB network-of-datasets containing 744 full-domain samples from 34 high-fidelity direct numerical simulations.
We benchmark a total of 49 variations of five deep learning approaches for 3D super-resolution.
- Score: 4.293221567339693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analysis of compressible turbulent flows is essential for applications
related to propulsion, energy generation, and the environment. Here, we present
BLASTNet 2.0, a 2.2 TB network-of-datasets containing 744 full-domain samples
from 34 high-fidelity direct numerical simulations, which addresses the current
limited availability of 3D high-fidelity reacting and non-reacting compressible
turbulent flow simulation data. With this data, we benchmark a total of 49
variations of five deep learning approaches for 3D super-resolution - which can
be applied for improving scientific imaging, simulations, turbulence models, as
well as in computer vision applications. We perform neural scaling analysis on
these models to examine the performance of different machine learning (ML)
approaches, including two scientific ML techniques. We demonstrate that (i)
predictive performance can scale with model size and cost, (ii) architecture
matters significantly, especially for smaller models, and (iii) the benefits of
physics-based losses can persist with increasing model size. The outcomes of
this benchmark study are anticipated to offer insights that can aid the design
of 3D super-resolution models, especially for turbulence models, while this
data is expected to foster ML methods for a broad range of flow physics
applications. This data is publicly available with download links and browsing
tools consolidated at https://blastnet.github.io.
Related papers
- Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation [83.18930314027254]
Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications.
In this work, we investigate scaling up EHPS towards the first generalist foundation model (dubbed SMPLer-X) with up to ViT-Huge as the backbone.
With big data and the large model, SMPLer-X exhibits strong performance across diverse test benchmarks and excellent transferability to even unseen environments.
arXiv Detail & Related papers (2023-09-29T17:58:06Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - CROMOSim: A Deep Learning-based Cross-modality Inertial Measurement
Simulator [7.50015216403068]
Inertial measurement unit (IMU) data has been utilized in monitoring and assessment of human mobility.
To mitigate the data scarcity problem, we design CROMOSim, a cross-modality sensor simulator.
It simulates high fidelity virtual IMU sensor data from motion capture systems or monocular RGB cameras.
arXiv Detail & Related papers (2022-02-21T22:30:43Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - Turbulence Enrichment using Physics-informed Generative Adversarial
Networks [0.0]
We develop methods for generative enrichment of turbulence.
We incorporate a physics-informed learning approach by a modification to the loss function.
We show that using the physics-informed learning can also significantly improve the model's ability in generating data that satisfies the physical governing equations.
arXiv Detail & Related papers (2020-03-04T06:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.