論文の概要: Adversarial Machine Learning in Latent Representations of Neural
Networks
- arxiv url: http://arxiv.org/abs/2309.17401v2
- Date: Fri, 24 Nov 2023 20:50:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 14:24:21.533797
- Title: Adversarial Machine Learning in Latent Representations of Neural
Networks
- Title(参考訳): ニューラルネットワークの潜在表現におけるadversarial machine learning
- Authors: Milin Zhang, Mohammad Abdi and Francesco Restuccia
- Abstract要約: 分散ディープニューラルネットワーク(DNN)は、モバイルデバイスの計算負担を低減し、エッジコンピューティングシナリオにおけるエンドツーエンドの推論レイテンシを低減することが示されている。
本稿では,分散DNNの敵行動に対する堅牢性について,厳密に分析する。
- 参考スコア(独自算出の注目度): 9.372908891132772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed deep neural networks (DNNs) have been shown to reduce the
computational burden of mobile devices and decrease the end-to-end inference
latency in edge computing scenarios. While distributed DNNs have been studied,
to the best of our knowledge the resilience of distributed DNNs to adversarial
action still remains an open problem. In this paper, we fill the existing
research gap by rigorously analyzing the robustness of distributed DNNs against
adversarial action. We cast this problem in the context of information theory
and introduce two new measurements for distortion and robustness. Our
theoretical findings indicate that (i) assuming the same level of information
distortion, latent features are always more robust than input representations;
(ii) the adversarial robustness is jointly determined by the feature dimension
and the generalization capability of the DNN. To test our theoretical findings,
we perform extensive experimental analysis by considering 6 different DNN
architectures, 6 different approaches for distributed DNN and 10 different
adversarial attacks to the ImageNet-1K dataset. Our experimental results
support our theoretical findings by showing that the compressed latent
representations can reduce the success rate of adversarial attacks by 88% in
the best case and by 57% on the average compared to attacks to the input space.
- Abstract(参考訳): 分散ディープニューラルネットワーク(DNN)は、モバイルデバイスの計算負担を低減し、エッジコンピューティングシナリオにおけるエンドツーエンドの推論レイテンシを低減することが示されている。
分散DNNは研究されているが、我々の知る限り、分散DNNの敵行動に対するレジリエンスは依然として未解決の問題である。
本稿では,分散DNNの対戦行動に対する堅牢性を厳密に分析することにより,既存の研究ギャップを埋める。
情報理論の文脈でこの問題を提起し、歪みと頑健性に関する2つの新しい測定基準を導入する。
理論的には
(i)同じレベルの情報歪みを仮定すると、潜時特徴は入力表現よりも常に堅牢である。
(II) DNNの特徴次元と一般化能力により, 対向ロバスト性は共同で決定される。
理論的知見を検証するために,6つの異なるDNNアーキテクチャ,分散DNNに対する6つの異なるアプローチ,ImageNet-1Kデータセットに対する10の異なる敵攻撃について検討した。
実験の結果, 圧縮潜在表現は, 入力空間に対する攻撃と比較して, 最大88%, 平均57%, 敵攻撃の成功率を低下させることを示した。
関連論文リスト
- Causal GNNs: A GNN-Driven Instrumental Variable Approach for Causal Inference in Networks [0.0]
CgNNは、隠れた共同設立者のバイアスを緩和し、因果効果の推定を改善するための新しいアプローチである。
以上の結果から,CgNNは隠れた共同創設者バイアスを効果的に軽減し,複雑なネットワークデータにおける因果推論のための堅牢なGNN駆動IVフレームワークを提供することが示された。
論文 参考訳(メタデータ) (2024-09-13T05:39:00Z) - Causal inference through multi-stage learning and doubly robust deep neural networks [10.021381302215062]
ディープニューラルネットワーク(DNN)は、大規模教師付き学習問題において顕著な経験的性能を示した。
本研究は、複雑な因果推論タスクの幅広い範囲にわたるDNNの適用について検討する。
論文 参考訳(メタデータ) (2024-07-11T14:47:44Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Not So Robust After All: Evaluating the Robustness of Deep Neural
Networks to Unseen Adversarial Attacks [5.024667090792856]
ディープニューラルネットワーク(DNN)は、分類、認識、予測など、さまざまなアプリケーションで注目を集めている。
従来のDNNの基本的属性は、入力データの修正に対する脆弱性である。
本研究の目的は、敵攻撃に対する現代の防御機構の有効性と一般化に挑戦することである。
論文 参考訳(メタデータ) (2023-08-12T05:21:34Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - On the Relationship Between Adversarial Robustness and Decision Region
in Deep Neural Network [26.656444835709905]
敵攻撃時のモデルロバスト性に影響を与えるディープニューラルネットワーク(DNN)の内部特性について検討する。
本稿では,より頻度の高いトレーニングサンプルを配置するPRS(Populated Region Set)の概念を提案する。
論文 参考訳(メタデータ) (2022-07-07T16:06:34Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Exploring Architectural Ingredients of Adversarially Robust Deep Neural
Networks [98.21130211336964]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,ネットワーク幅と深さがDNNの強靭性に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2021-10-07T23:13:33Z) - Recent Advances in Understanding Adversarial Robustness of Deep Neural
Networks [15.217367754000913]
敵の例に抵抗する高い堅牢性を持つモデルを得ることがますます重要である。
我々は、敵の攻撃と堅牢性について、予備的な定義を与える。
我々は、頻繁に使用されるベンチマークについて研究し、理論的に証明された敵の堅牢性の境界について言及する。
論文 参考訳(メタデータ) (2020-11-03T07:42:53Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。