論文の概要: MP-FVM: Enhancing Finite Volume Method for Water Infiltration Modeling in Unsaturated Soils via Message-passing Encoder-decoder Network
- arxiv url: http://arxiv.org/abs/2310.02806v3
- Date: Wed, 29 Oct 2025 17:05:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:42.580152
- Title: MP-FVM: Enhancing Finite Volume Method for Water Infiltration Modeling in Unsaturated Soils via Message-passing Encoder-decoder Network
- Title(参考訳): MP-FVM:メッセージパッシングエンコーダ・デコーダネットワークによる不飽和土壌の浸透モデリングのための有限体積法
- Authors: Zeyuan Song, Zheyu Jiang,
- Abstract要約: 我々はMP-FVM(Message Passing-Finite Volume Method)と呼ばれる新しいソリューションを提案する。
我々のMP-FVMアルゴリズムは, 妥当な仮定の下で収束を保証する混合形式$n$次元リチャーズ方程式を正確に解くことができることを示す。
- 参考スコア(独自算出の注目度): 0.7305019142196584
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The spatiotemporal water flow dynamics in unsaturated soils can generally be modeled by the Richards equation. To overcome the computational challenges associated with solving this highly nonlinear partial differential equation (PDE), we present a novel solution algorithm, which we name as the MP-FVM (Message Passing-Finite Volume Method), to holistically integrate adaptive fixed-point iteration scheme, encoder-decoder neural network architecture, Sobolev training, and message passing mechanism in a finite volume discretization framework. We thoroughly discuss the need and benefits of introducing these components to achieve synergistic improvements in accuracy and stability of the solution. We also show that our MP-FVM algorithm can accurately solve the mixed-form $n$-dimensional Richards equation with guaranteed convergence under reasonable assumptions. Through several illustrative examples, we demonstrate that our MP-FVM algorithm not only achieves superior accuracy, but also better preserves the underlying physical laws and mass conservation of the Richards equation compared to state-of-the-art solution algorithms and the commercial HYDRUS solver.
- Abstract(参考訳): 不飽和土壌における時空間水流のダイナミクスは、一般的にリチャーズ方程式によってモデル化できる。
この高非線形偏微分方程式 (PDE) の解法を解くために,MP-FVM (Message Passing-Finite Volume Method) と呼ばれる新しい解法を提案する。
ソリューションの精度と安定性の相乗的改善を実現するために、これらのコンポーネントを導入する必要性とメリットを徹底的に議論する。
また、MP-FVMアルゴリズムは、妥当な仮定の下で収束を保証する混合形式$n$次元リチャーズ方程式を正確に解くことができることを示す。
いくつかの例を通して、我々のMP-FVMアルゴリズムは優れた精度を達成できるだけでなく、リチャーズ方程式の物理法則や大量保存も、最先端の解法アルゴリズムや商用HYDRUSソルバと比較して良く維持できることを示した。
関連論文リスト
- Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
本研究では,微分可能物理の概念に基づいて,非構造格子を階層化するアルゴリズムを提案する。
多孔質媒質中のわずかに圧縮可能な流体流を制御した線形方程式と波動方程式の2つのPDE上でのアルゴリズムの性能を示す。
その結果,検討したシナリオでは,関心点におけるモデル変数のダイナミクスを保ちながら,格子点数を最大10倍に削減した。
論文 参考訳(メタデータ) (2025-07-24T11:02:13Z) - Diffusion Models for Solving Inverse Problems via Posterior Sampling with Piecewise Guidance [52.705112811734566]
断片的なガイダンススキームを用いて,逆問題を解決するための新しい拡散型フレームワークが導入された。
提案手法は問題に依存しず,様々な逆問題に容易に適応できる。
このフレームワークは, (4時間), (8時間) の超分解能タスクに対して, (23%), (24%) および (24%) の無作為マスクを塗布する場合の (25%) の推論時間を短縮する。
論文 参考訳(メタデータ) (2025-07-22T19:35:14Z) - Enhancing Distributional Robustness in Principal Component Analysis by Wasserstein Distances [7.695578200868269]
主成分分析(PCA)の分布ロバスト最適化(DRO)モデルについて,基礎となる確率分布の不確実性を考慮する。
結果の定式化は非滑らかな制約付き min-max 最適化問題につながり、曖昧性集合はタイプ2$ワッサーシュタイン距離で分布の不確かさを捉える。
この明示的な特徴付けは、元の DRO モデルを、複雑な非滑らかな項を持つスティーフェル多様体上の最小化問題に同値に再構成する。
論文 参考訳(メタデータ) (2025-03-04T11:00:08Z) - Scientific Machine Learning of Flow Resistance Using Universal Shallow Water Equations with Differentiable Programming [5.061700088495018]
我々はハイブリッド流体力学モデリングのための普遍的なSWE解法であるHydrogradを開発した。
正確に前方シミュレーションを行い、自動微分をサポートし、物理発見のための科学的機械学習を実行することができる。
論文 参考訳(メタデータ) (2025-02-18T00:07:14Z) - Towards Better Statistical Understanding of Watermarking LLMs [7.68488211412916]
本稿では,大規模言語モデル(LLM)の透かし問題について検討する。
モデル歪みと検出能力のトレードオフと,Kirchenbauer et alのグリーンレッドリストに基づく制約付き最適化問題とみなす。
本稿では,この最適化定式化を考慮したオンライン二重勾配上昇透かしアルゴリズムを開発し,モデル歪みと検出能力の最適性を示す。
論文 参考訳(メタデータ) (2024-03-19T01:57:09Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solve flow-based distributionally robust optimization (DRO) problem with Wasserstein uncertainty set。
我々は、連続した最悪のケース分布(Last Favorable Distribution, LFD)とそれからのサンプルを見つけることを目指している。
本稿では、逆学習、分布論的に堅牢な仮説テスト、およびデータ駆動型分布摂動差分プライバシーの新しいメカニズムを実証する。
論文 参考訳(メタデータ) (2023-10-30T03:53:31Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Attention U-Net as a surrogate model for groundwater prediction [13.029731605492252]
本研究では,地下水系の応答を計算するための代理モデルとして,物理に基づく畳み込みエンコーダ・デコーダニューラルネットワークを提案する。
クロスドメインマッピングにおいて強い確約を持つエンコーダ・デコーダネットワークは、物理システムの複雑な入出力マッピングの学習に適用可能である。
論文 参考訳(メタデータ) (2022-04-09T17:46:24Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
ランダムスパースセンサからフィールド量の推定を行うための,GAN(Super- resolution Generative Adversarial Network)フレームワークを提案する。
このアルゴリズムはランダムサンプリングを利用して、高解像度の基底分布の不完全ビューを提供する。
提案手法は, 流体流動シミュレーション, 海洋表面温度分布測定, 粒子画像速度測定データの合成データベースを用いて検証した。
論文 参考訳(メタデータ) (2022-02-23T18:57:53Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Learning the structure of wind: A data-driven nonlocal turbulence model
for the atmospheric boundary layer [0.0]
我々は,大気境界層をモデル化するための新しいデータ駆動手法を開発した。
このアプローチは、非局所的、異方性合成乱流モデルに導かれ、我々は、ディープ・ラピッド・ラピッド・歪み(DRD)モデルと呼ぶ。
論文 参考訳(メタデータ) (2021-07-23T06:41:33Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
最適なロバストなポリシーの存在を示し、摂動に対する感度分析を行い、新しいロバストな学習アルゴリズムを設計する。
提案アルゴリズムの有効性はCart-Pole環境で検証する。
論文 参考訳(メタデータ) (2020-06-01T13:48:59Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。