論文の概要: Towards out-of-distribution generalizable predictions of chemical
kinetics properties
- arxiv url: http://arxiv.org/abs/2310.03152v2
- Date: Mon, 4 Dec 2023 20:12:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-06 19:36:26.232706
- Title: Towards out-of-distribution generalizable predictions of chemical
kinetics properties
- Title(参考訳): 化学動力学特性の一般予測に向けて
- Authors: Zihao Wang, Yongqiang Chen, Yang Duan, Weijiang Li, Bo Han, James
Cheng, Hanghang Tong
- Abstract要約: Out-Of-Distribution (OOD) の運動特性予測は一般化可能である必要がある。
本稿では,OODの運動特性予測を3つのレベル(構造,条件,機構)に分類する。
我々は、OOD設定における反応予測のための最先端MLアプローチと、速度論的特性予測問題における最先端グラフOOD手法をベンチマークするために、包括的なデータセットを作成する。
- 参考スコア(独自算出の注目度): 61.15970601264632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) techniques have found applications in estimating
chemical kinetic properties. With the accumulated drug molecules identified
through "AI4drug discovery", the next imperative lies in AI-driven design for
high-throughput chemical synthesis processes, with the estimation of properties
of unseen reactions with unexplored molecules. To this end, the existing ML
approaches for kinetics property prediction are required to be
Out-Of-Distribution (OOD) generalizable. In this paper, we categorize the OOD
kinetic property prediction into three levels (structure, condition, and
mechanism), revealing unique aspects of such problems. Under this framework, we
create comprehensive datasets to benchmark (1) the state-of-the-art ML
approaches for reaction prediction in the OOD setting and (2) the
state-of-the-art graph OOD methods in kinetics property prediction problems.
Our results demonstrated the challenges and opportunities in OOD kinetics
property prediction. Our datasets and benchmarks can further support research
in this direction.
- Abstract(参考訳): 機械学習(ML)技術は化学運動特性の推定に応用されている。
AI4drug discovery」によって同定された薬物分子の蓄積により、次に必須となるのは、高出力化学合成プロセスのためのAI駆動設計であり、未知の分子と未知の反応の性質を推定する。
この目的のために、運動学特性予測のための既存のMLアプローチは、out-Of-Distribution (OOD) の一般化が要求される。
本稿では,OODの運動特性予測を3つのレベル(構造,条件,機構)に分類し,その特異な側面を明らかにする。
本フレームワークでは,1)OOD設定における反応予測のための最先端MLアプローチと,2)動作特性予測問題における最先端グラフOOD手法をベンチマークするために,包括的なデータセットを作成する。
その結果,OOD特性予測の課題と可能性を示した。
私たちのデータセットとベンチマークは、この方向の研究をさらに支援できます。
関連論文リスト
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
本稿では,様々な有機反応関連タスクに適した新しい化学反応表現学習モデルであるモデルネームを紹介する。
反応物質と生成物との原子対応を統合することにより、反応中に生じる分子変換を識別し、反応機構の理解を深める。
反応条件を化学反応表現に組み込むアダプタ構造を設計し、様々な反応条件を処理し、様々なデータセットや下流タスク、例えば反応性能予測に適応できるようにした。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - Balancing Molecular Information and Empirical Data in the Prediction of Physico-Chemical Properties [8.649679686652648]
本稿では,分子記述子と表現学習を組み合わせた一般的な手法を提案する。
提案したハイブリッドモデルは,グラフニューラルネットワークを用いた化学構造情報を利用する。
構造に基づく予測が信頼できない場合を自動的に検出し、表現学習に基づく予測によって修正する。
論文 参考訳(メタデータ) (2024-06-12T10:51:00Z) - Machine Learning for Polaritonic Chemistry: Accessing chemical kinetics [0.0]
我々は、密度汎関数理論計算と分子動力学を用いて訓練された機械学習(ML)モデルの組み合わせに基づく枠組みを確立する。
我々は, 1-フェニル-2-トリメチルシリルアセチレンの脱保護反応における強結合, 反応速度定数の変化, エンタルピーおよびエントロピーへの影響を評価した。
我々は、特に運動学の変化に関して、批判的な実験的な観察と質的な一致を見いだす一方で、過去の理論的予測との違いも見いだす。
論文 参考訳(メタデータ) (2023-11-16T10:08:44Z) - Beyond Chemical Language: A Multimodal Approach to Enhance Molecular
Property Prediction [2.1202329976106924]
本稿では,化学言語表現と物理化学的特徴を組み合わせた分子特性予測のための新しい多モーダル言語モデルを提案する。
提案手法であるMultiMODAL-MOLFORMERは,特定の標的特性に対する直接因果効果に基づいて物理化学的特徴を同定する因果多段階特徴選択法を用いている。
ケミカル言語ベースのMOLFORMERやグラフニューラルネットワークなど,既存の最先端アルゴリズムと比較して,優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-22T13:28:59Z) - MetaRF: Differentiable Random Forest for Reaction Yield Prediction with
a Few Trails [58.47364143304643]
本稿では,反応収率予測問題に焦点をあてる。
筆者らはまず,数発の収量予測のために特別に設計された,注意に基づく識別可能なランダム森林モデルであるMetaRFを紹介した。
数発の学習性能を改善するために,さらに次元還元に基づくサンプリング手法を導入する。
論文 参考訳(メタデータ) (2022-08-22T06:40:13Z) - Semi-Supervised Junction Tree Variational Autoencoder for Molecular
Property Prediction [0.0]
本研究では, 化学特性予測における半教師付き学習を容易にするため, 最先端分子生成法であるJT-VAEを改良した。
我々はJT-VAEアーキテクチャを活用し、分子特性予測から条件付き分子生成までのタスクに最適な解釈可能な表現を学習する。
論文 参考訳(メタデータ) (2022-08-10T03:06:58Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
分子レグレッション問題に対する一般化能力を高めるために,MROTと呼ばれる新しい最適輸送ベースアルゴリズムを開発した。
MROTは最先端のモデルよりも優れており、新しい物質の発見を加速する有望な可能性を示している。
論文 参考訳(メタデータ) (2022-02-13T04:56:18Z) - Kinetics-Informed Neural Networks [0.0]
我々は、通常の微分方程式を解くために、サロゲートモデルを構築するための基礎関数としてフィードフォワード人工ニューラルネットワークを用いる。
正規化多目的最適化設定におけるニューラルネットと運動モデルパラメータの同時学習により,逆問題の解が導かれることを示す。
この逆運動的ODEに対する代理的アプローチは、過渡的なデータに基づく反応機構の解明に役立てることができる。
論文 参考訳(メタデータ) (2020-11-30T00:07:09Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
汎用的なクエリベースの分子最適化フレームワークであるQMOを提案する。
QMOは効率的なクエリに基づいて入力分子の所望の特性を改善する。
QMOは, 有機分子を最適化するベンチマークタスクにおいて, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T18:51:18Z) - Graph Neural Networks for the Prediction of Substrate-Specific Organic
Reaction Conditions [79.45090959869124]
有機化学反応をモデル化するために,グラフニューラルネットワーク(GNN)を用いた系統的研究を行った。
実験試薬と条件の識別に関わる分類タスクに対して、7つの異なるGNNアーキテクチャを評価した。
論文 参考訳(メタデータ) (2020-07-08T17:21:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。