論文の概要: Resource Efficient Boolean Function Solver on Quantum Computer
- arxiv url: http://arxiv.org/abs/2310.05013v3
- Date: Tue, 24 Sep 2024 09:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 10:12:15.531344
- Title: Resource Efficient Boolean Function Solver on Quantum Computer
- Title(参考訳): 量子コンピュータにおける資源効率の良いブール関数解法
- Authors: Xiang Li, Hanxiang Shen, Weiguo Gao, Yingzhou Li,
- Abstract要約: グロバーのアルゴリズムは、量子コンピュータ上の非線形方程式系を解く最もよく知られた量子探索アルゴリズムの1つである。
本稿では,Groverのフレームワーク下での反復効率向上のための3つの新しい手法を提案する。
- 参考スコア(独自算出の注目度): 7.833656237685403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonlinear boolean equation systems play an important role in a wide range of applications. Grover's algorithm is one of the best-known quantum search algorithms in solving the nonlinear boolean equation system on quantum computers. In this paper, we propose three novel techniques to improve the efficiency under Grover's algorithm framework. A W-cycle circuit construction introduces a recursive idea to increase the solvable number of boolean equations given a fixed number of qubits. Then, a greedy compression technique is proposed to reduce the oracle circuit depth. Finally, a randomized Grover's algorithm randomly chooses a subset of equations to form a random oracle every iteration, which further reduces the circuit depth and the number of ancilla qubits. Numerical results on boolean quadratic equations demonstrate the efficiency of the proposed techniques.
- Abstract(参考訳): 非線形ブール方程式系は幅広い応用において重要な役割を果たす。
グロバーのアルゴリズムは、量子コンピュータ上の非線形ブール方程式を解く最もよく知られた量子探索アルゴリズムの1つである。
本稿では,Groverのアルゴリズムフレームワークによる効率向上のための3つの新しい手法を提案する。
Wサイクル回路の構成は、一定数の量子ビットを与えられたブール方程式の解数を増やす再帰的アイデアを導入する。
そして, オラクル回路の深さを低減するため, グリージー圧縮法を提案する。
最後に、ランダム化されたグロバーのアルゴリズムは、繰り返しごとにランダムなオラクルを形成するために方程式のサブセットをランダムに選択し、さらに回路深さとアンシラ量子ビットの数を減少させる。
ブール二次方程式の数値計算結果から,提案手法の有効性が示された。
関連論文リスト
- Shadow Quantum Linear Solver: A Resource Efficient Quantum Algorithm for Linear Systems of Equations [0.8437187555622164]
本稿では,デジタル量子デバイス上での量子線形システム問題(QLSP)の解法を提案する。
その結果、大きな制御されたユニタリの必要性を回避し、システムサイズで対数的な多くの量子ビットを必要とする量子アルゴリズムが実現した。
これを、線形代数の分解定理を利用して、2次元格子における離散化されたラプラス方程式を解くことで、実用的妥当性の物理問題に適用する。
論文 参考訳(メタデータ) (2024-09-13T15:46:32Z) - Trainable Variational Quantum-Multiblock ADMM Algorithm for Generation
Scheduling [0.0]
本稿では、量子コンピューティング、機械学習、分散最適化による生成スケジューリングのための2ループ量子解アルゴリズムを提案する。
この目的は、実用的な電力系統の問題を解決するために、限られた量子ビット数を持つ短期量子機械の雑音を緩和することである。
論文 参考訳(メタデータ) (2023-03-28T21:31:39Z) - Opening the Black Box Inside Grover's Algorithm [0.0]
グロバーのアルゴリズムは、量子コンピュータが古典的コンピュータよりも有利であることを示す主要なアルゴリズムである。
我々は,古典的コンピュータ上で動作可能な量子インスパイアされたアルゴリズムを構築し,Groverのタスクを,オラクルへの(シミュレーションの)呼び出し数で線形に実行する。
論文 参考訳(メタデータ) (2023-03-20T17:56:20Z) - Quantum speedup of leverage score sampling and its application [0.0]
本稿では,レバレッジスコアの計算を高速化する量子アルゴリズムを提案する。
応用として,ベクトル解出力を用いた剛性回帰問題に対する新しい量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-15T14:40:18Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
量子計算のコヒーレント制御は、いくつかの量子プロトコルやアルゴリズムを改善するために使用できる。
我々は、量子光学にインスパイアされたコヒーレント制御のためのグラフィカル言語PBS計算を洗練する。
論文 参考訳(メタデータ) (2022-02-10T18:59:52Z) - Gaussian Elimination versus Greedy Methods for the Synthesis of Linear
Reversible Circuits [0.0]
可逆回路は、量子コンピューティングに多くの応用がある可逆回路のサブクラスを表す。
ガウス除去アルゴリズムの最適化版と調整LU分解を用いて,任意の線形可逆作用素に対する新しいアルゴリズムを提案する。
全体として、我々のアルゴリズムは特定の問題サイズに対する最先端の手法を改善している。
論文 参考訳(メタデータ) (2022-01-17T16:31:42Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
論文 参考訳(メタデータ) (2020-01-12T15:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。