LGL-BCI: A Motor-Imagery-Based Brain-Computer Interface with Geometric Learning
- URL: http://arxiv.org/abs/2310.08051v5
- Date: Sat, 08 Mar 2025 15:14:27 GMT
- Title: LGL-BCI: A Motor-Imagery-Based Brain-Computer Interface with Geometric Learning
- Authors: Jianchao Lu, Yuzhe Tian, Yang Zhang, Quan Z. Sheng, Xi Zheng,
- Abstract summary: We develop a prototype, called the Lightweight Geometric Learning Brain--Computer Interface (LGL-BCI)<n>LGL-BCI uses our customized geometric deep learning architecture for swift model inference without sacrificing accuracy.<n>The performance of our solution was evaluated using two real-world EEG devices and two public EEG datasets.
- Score: 14.913592381049552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain--computer interfaces are groundbreaking technology whereby brain signals are used to control external devices. Despite some advances in recent years, electroencephalogram (EEG)-based motor-imagery tasks face challenges, such as amplitude and phase variability and complex spatial correlations, with a need for smaller models and faster inference. In this study, we develop a prototype, called the Lightweight Geometric Learning Brain--Computer Interface (LGL-BCI), which uses our customized geometric deep learning architecture for swift model inference without sacrificing accuracy. LGL-BCI contains an EEG channel selection module via a feature decomposition algorithm to reduce the dimensionality of a symmetric positive definite matrix, providing adaptiveness among the continuously changing EEG signal. Meanwhile, a built-in lossless transformation helps boost the inference speed. The performance of our solution was evaluated using two real-world EEG devices and two public EEG datasets. LGL-BCI demonstrated significant improvements, achieving an accuracy of 82.54% compared to 62.22% for the state-of-the-art approach. Furthermore, LGL-BCI uses fewer parameters (64.9K vs. 183.7K), highlighting its computational efficiency. These findings underscore both the superior accuracy and computational efficiency of LGL-BCI, demonstrating the feasibility and robustness of geometric deep learning in motor-imagery brain--computer interface applications.
Related papers
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)
Our tokenization scheme represents EEG signals at a per-channel patch.
We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - On-device Learning of EEGNet-based Network For Wearable Motor Imagery Brain-Computer Interface [2.1710886744493263]
This paper implements a lightweight and efficient on-device learning engine for wearable motor imagery recognition.
We demonstrate a remarkable accuracy gain of up to 7.31% with respect to the baseline with a memory footprint of 15.6 KByte.
Our tailored approach exhibits inference time of 14.9 ms and 0.76 mJ per single inference and 20 us and 0.83 uJ per single update during online training.
arXiv Detail & Related papers (2024-08-25T08:23:51Z) - EEG_GLT-Net: Optimising EEG Graphs for Real-time Motor Imagery Signals Classification [7.9035081192335115]
Graph Neural Networks (GCN) have been increasingly applied for classifying EEG Motor Imagery signals.
Recent advances in real-time EEG MI signal classification utilised Pearson Coefficient Correlation (PCC) for constructing adjacency matrices.
This paper introduces the EEG Graph Lottery Ticket (EEG_GLT) algorithm, an innovative technique for constructing adjacency matrices for EEG channels.
arXiv Detail & Related papers (2024-04-17T05:16:12Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
arXiv Detail & Related papers (2024-04-08T16:34:35Z) - Geometric Neural Network based on Phase Space for BCI-EEG decoding [2.8196015357423376]
The integration of Deep Learning algorithms on brain signal analysis is still in its nascent stages.
EEG is a widely adopted choice for designing BCI systems due to its non-invasive and cost-effective nature and excellent temporal resolution.
We propose the Phase-SPDNet architecture and analyze its performance and the interpretability of the results.
arXiv Detail & Related papers (2024-03-08T19:36:20Z) - ESTformer: Transformer Utilizing Spatiotemporal Dependencies for EEG
Super-resolution [14.2426667945505]
ESTformer is an EEG framework utilizingtemporal dependencies based on the Transformer.
The ESTformer applies positional encoding methods and the Multi-head Self-attention mechanism to the space and time dimensions.
arXiv Detail & Related papers (2023-12-03T12:26:32Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - Bayesian Inference on Brain-Computer Interfaces via GLASS [4.04514704204904]
Low signal-to-noise ratio (SNR) and complex spatial/temporal correlations of EEG signals present challenges in modeling and computation.
We introduce a novel Gaussian Latent channel model with Sparse time-varying effects (GLASS) under a fully Bayesian framework.
We demonstrate GLASS substantially improves BCI's performance in participants with amyotrophic lateral sclerosis (ALS)
For broader accessibility, we develop an efficient gradient-based variational inference (GBVI) algorithm for posterior computation.
arXiv Detail & Related papers (2023-04-14T21:29:00Z) - A Hybrid Brain-Computer Interface Using Motor Imagery and SSVEP Based on
Convolutional Neural Network [0.9176056742068814]
We propose a two-stream convolutional neural network (TSCNN) based hybrid brain-computer interface.
It combines steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms.
TSCNN automatically learns to extract EEG features in the two paradigms in the training process.
arXiv Detail & Related papers (2022-12-10T12:34:36Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
Motor-imagery based brain-computer interfaces (MI-BCI) have the potential to become ground-breaking technologies for neurorehabilitation.
Due to the noisy nature of the used EEG signal, reliable BCI systems require specialized procedures for features optimization and extraction.
arXiv Detail & Related papers (2020-10-13T20:50:13Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Transfer Learning for Motor Imagery Based Brain-Computer Interfaces: A
Complete Pipeline [54.73337667795997]
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject.
This paper proposes that TL could be considered in all three components (spatial filtering, feature engineering, and classification) of MI-based BCIs.
arXiv Detail & Related papers (2020-07-03T23:44:21Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
A novel deep learning framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals.
The introduced approach has been shown to converge for both personalized and group-wise predictions.
arXiv Detail & Related papers (2020-06-16T04:57:12Z) - EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded
Motor-Imagery Brain-Machine Interfaces [15.07343602952606]
We propose EEG-TCNet, a novel temporal convolutional network (TCN) that achieves outstanding accuracy while requiring few trainable parameters.
Its low memory footprint and low computational complexity for inference make it suitable for embedded classification on resource-limited devices at the edge.
arXiv Detail & Related papers (2020-05-31T21:45:45Z) - Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet
Implementation for Edge Motor-Imagery Brain--Machine Interfaces [16.381467082472515]
Motor-Imagery Brain--Machine Interfaces (MI-BMIs)promise direct and accessible communication between human brains and machines.
Deep learning models have emerged for classifying EEG signals.
These models often exceed the limitations of edge devices due to their memory and computational requirements.
arXiv Detail & Related papers (2020-04-24T12:29:03Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.