論文の概要: Model-Agnostic Covariate-Assisted Inference on Partially Identified
Causal Effects
- arxiv url: http://arxiv.org/abs/2310.08115v1
- Date: Thu, 12 Oct 2023 08:17:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-15 10:59:04.890672
- Title: Model-Agnostic Covariate-Assisted Inference on Partially Identified
Causal Effects
- Title(参考訳): 半同定因果効果に対するモデル非依存共変量支援推論
- Authors: Wenlong Ji, Lihua Lei, Asher Spector
- Abstract要約: 多くの因果推定値は、潜在的な結果間の観測不能な関節分布に依存するため、部分的にしか識別できない。
本研究では,部分的同定された推定値の広いクラスに対して,統一的かつモデルに依存しない推論手法を提案する。
- 参考スコア(独自算出の注目度): 2.1638817206926855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many causal estimands are only partially identifiable since they depend on
the unobservable joint distribution between potential outcomes. Stratification
on pretreatment covariates can yield sharper partial identification bounds;
however, unless the covariates are discrete with relatively small support, this
approach typically requires consistent estimation of the conditional
distributions of the potential outcomes given the covariates. Thus, existing
approaches may fail under model misspecification or if consistency assumptions
are violated. In this study, we propose a unified and model-agnostic
inferential approach for a wide class of partially identified estimands, based
on duality theory for optimal transport problems. In randomized experiments,
our approach can wrap around any estimates of the conditional distributions and
provide uniformly valid inference, even if the initial estimates are
arbitrarily inaccurate. Also, our approach is doubly robust in observational
studies. Notably, this property allows analysts to use the multiplier bootstrap
to select covariates and models without sacrificing validity even if the true
model is not included. Furthermore, if the conditional distributions are
estimated at semiparametric rates, our approach matches the performance of an
oracle with perfect knowledge of the outcome model. Finally, we propose an
efficient computational framework, enabling implementation on many practical
problems in causal inference.
- Abstract(参考訳): 多くの因果推定値は、潜在的な結果間の観測不能な関節分布に依存するため、部分的にしか識別できない。
プレトリート共変量体上の成層化はよりシャープな部分的識別境界が得られるが、共変量体が比較的小さな支持で離散的でない限り、この方法は通常、共変量体が与える潜在的な結果の条件分布を一貫した推定を必要とする。
したがって、既存のアプローチはモデルの誤特定や一貫性の仮定に違反した場合に失敗する可能性がある。
本研究では, 最適輸送問題に対する双対性理論に基づいて, 部分的同定されたエスティムマンドの幅広いクラスに対して, 統一的かつモデル非依存な推論アプローチを提案する。
ランダム化実験では、初期推定が任意に不正確であっても、条件分布の任意の推定をラップし、均一に妥当な推論を提供できる。
また,このアプローチは観測研究において2倍頑健である。
この特性は、たとえ真のモデルが含まれていなくても有効性を犠牲にすることなく、乗算器ブートストラップを使って共変量やモデルを選択できる。
さらに、条件分布が半パラメトリックレートで推定される場合、このアプローチは、結果モデルに関する完全な知識を持つオラクルのパフォーマンスに適合する。
最後に,因果推論における多くの実用的問題の実装を可能にする効率的な計算フレームワークを提案する。
関連論文リスト
- Accounting for Missing Covariates in Heterogeneous Treatment Estimation [17.09751619857397]
生態学的推論に基づく新しい部分的識別戦略を導入する。
私たちのフレームワークは、他の方法では不可能であるよりもずっと厳密な境界を生成できることを示します。
論文 参考訳(メタデータ) (2024-10-21T05:47:07Z) - Sparsified Simultaneous Confidence Intervals for High-Dimensional Linear
Models [4.010566541114989]
本稿では,間隔化同時信頼区間という,同時信頼区間の概念を提案する。
我々の区間は、区間の上と下の境界の一部が 0 に切り替わるという意味でスパースである。
提案手法は様々な選択手順と組み合わせることができるため,不確実性を比較するのに最適である。
論文 参考訳(メタデータ) (2023-07-14T18:37:57Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
二重確率点過程は、ランダム強度関数の実現を前提とした不均一過程として空間領域上の事象の発生をモデル化する。
既存の二重確率空間モデルの実装は、計算的に要求され、しばしば理論的な保証が制限され、または制限的な仮定に依存している。
論文 参考訳(メタデータ) (2023-06-11T19:48:39Z) - Covariate balancing using the integral probability metric for causal
inference [1.8899300124593648]
本稿では,2つの確率測度間の距離である積分確率測度(IPM)について検討する。
モデルを正確に指定することなく,対応する推定器の整合性を証明した。
提案手法は, 有限標本に対して, 既存の重み付け法よりも大きなマージンを有する。
論文 参考訳(メタデータ) (2023-05-23T06:06:45Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
本研究では, スコアマッチングの統計的効率と推定される分布の等尺性との間に, 密接な関係を示す。
これらの結果はサンプル状態と有限状態の両方で定式化する。
論文 参考訳(メタデータ) (2022-10-03T06:09:01Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Distribution-Free Robust Linear Regression [5.532477732693]
共変体の分布を仮定せずにランダムな設計線形回帰を研究する。
最適部分指数尾を持つオーダー$d/n$の過大なリスクを達成する非線形推定器を構築する。
我々は、Gy"orfi, Kohler, Krzyzak, Walk が原因で、truncated least squares 推定器の古典的境界の最適版を証明した。
論文 参考訳(メタデータ) (2021-02-25T15:10:41Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。