論文の概要: Generalized quantum data-syndrome codes and belief propagation decoding for phenomenological noise
- arxiv url: http://arxiv.org/abs/2310.12682v2
- Date: Sun, 12 Jan 2025 13:30:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:20:59.990037
- Title: Generalized quantum data-syndrome codes and belief propagation decoding for phenomenological noise
- Title(参考訳): 一般化量子データ-シンドローム符号と現象ノイズに対する信念伝播復号法
- Authors: Kao-Yueh Kuo, Ching-Yi Lai,
- Abstract要約: 量子データシンドローム符号と、四進アルファベットと二進アルファベットを統合した一般化チェック行列を導入し、多様な誤り源を表現した。
高いエラー率では、症候群抽出のラウンドが少なく、より少ないエラー率ではラウンドが改善する傾向にある。
- 参考スコア(独自算出の注目度): 6.322831694506286
- License:
- Abstract: Quantum stabilizer codes often struggle with syndrome errors due to measurement imperfections. Typically, multiple rounds of syndrome extraction are employed to ensure reliable error information. In this paper, we consider phenomenological decoding problems, where data qubit errors may occur between extractions, and each measurement can be faulty. We introduce generalized quantum data-syndrome codes along with a generalized check matrix that integrates both quaternary and binary alphabets to represent diverse error sources. This results in a Tanner graph with mixed variable nodes, enabling the design of belief propagation (BP) decoding algorithms that effectively handle phenomenological errors. Importantly, our BP decoders are applicable to general sparse quantum codes. Through simulations, we achieve an error threshold of more than 3\% for quantum memory protected by rotated toric codes, using solely BP without post-processing. Our results indicate that $d$ rounds of syndrome extraction are sufficient for a toric code of distance $d$. We observe that at high error rates, fewer rounds of syndrome extraction tend to perform better, while more rounds improve performance at lower error rates. Additionally, we propose a method to construct effective redundant stabilizer checks for single-shot error correction. Our simulations show that BP decoding remains highly effective even with a high syndrome error rate.
- Abstract(参考訳): 量子安定器符号は、測定の不完全性によってしばしばシンドロームエラーに悩まされる。
典型的には、信頼できるエラー情報を確保するために複数の症候群抽出ラウンドが使用される。
本稿では,抽出間のデータキュービット誤差が発生する現象論的復号問題について考察する。
我々は、一般化された量子データシンドローム符号と、四進文字と二進文字を統合した一般化されたチェック行列を導入し、多様なエラー源を表現した。
この結果、混合変数ノードを持つタナーグラフは、現象学的誤りを効果的に処理する信念伝搬(BP)復号アルゴリズムの設計を可能にする。
重要なことに、BPデコーダは一般的なスパース量子符号に適用できる。
シミュレーションにより,回転トーリック符号で保護された量子メモリの誤差閾値を,後処理なしでBPのみを用いて3\%以上達成する。
以上の結果から, 距離$d$のトーリックコードに対して, シンドローム抽出の$d$ラウンドが十分であることが示唆された。
高いエラー率では、症候群抽出のラウンドが少なく、より少ないエラー率ではラウンドが改善する傾向にある。
さらに、単発誤り訂正のための効果的な冗長な安定化器チェックを構築する方法を提案する。
シミュレーションの結果,BP復号法は,高シンドロームエラー率でも有効であることがわかった。
関連論文リスト
- Adaptive Syndrome Extraction [1.9686770963118383]
適応型シンドローム抽出は、コード性能を改善し、量子誤り訂正サイクル時間を短縮するスキームとして導入する。
非整合符号や非適応型シンドローム抽出と比較して、適応的スキームは論理的誤り率の桁違いで達成される。
論文 参考訳(メタデータ) (2025-02-20T18:48:32Z) - Fault-Tolerant Belief Propagation for Practical Quantum Memory [6.322831694506286]
信頼性量子メモリに対するフォールトトレラントなアプローチは、スケーラブルな量子コンピューティングには不可欠である。
本稿では,複数ラウンドのシンドローム抽出と混合アルファベット誤差変数を用いた時空間タナーグラフを用いたデコーダを提案する。
シミュレーションでは,0.4%-0.87%のエラーしきい値とトポロジカルコード群に対する強いエラーフロア性能を示す。
論文 参考訳(メタデータ) (2024-09-27T12:21:45Z) - Transformer-QEC: Quantum Error Correction Code Decoding with
Transferable Transformers [18.116657629047253]
本稿では,変圧器を用いた量子誤り訂正(QEC)デコーダを提案する。
全ての入力症候群にまたがるグローバルな受容野を達成するために、自己認識を用いる。
これは、局所的な物理的エラーとグローバルなパリティラベルの損失を組み合わせた混合損失トレーニングアプローチを取り入れている。
論文 参考訳(メタデータ) (2023-11-27T18:52:25Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
単一マルチレベルキューディットに実装された安定化器量子エラー訂正符号について論じる。
これらのコードは、quditの特定の物理的エラーに合わせてカスタマイズすることができ、効果的にそれらを抑制することができる。
分子スピン四重項上のフォールトトレラントな実装を実証し、線形キューディットサイズのみの成長を伴うほぼ指数関数的な誤差抑制を示す。
論文 参考訳(メタデータ) (2023-07-20T10:51:23Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Soft Syndrome Decoding of Quantum LDPC Codes for Joint Correction of
Data and Syndrome Errors [10.200716411599831]
量子エラーは、主にシンドローム情報の測定を用いて検出・修正される。
本稿では,従来の離散化ステップを使わずに,この「ソフト」やアナログ情報を利用する。
改良型デコーダにおいて,本症候群から軟部情報を抽出する利点を示す。
論文 参考訳(メタデータ) (2022-05-04T22:00:32Z) - Error-rate-agnostic decoding of topological stabilizer codes [0.0]
我々は、位相フリップとビットフリップの相対確率というバイアスに依存するデコーダを開発するが、誤差率には依存しない。
我々のデコーダは、与えられたシンドロームの同値類における最も可能性の高いエラー連鎖の数と有効重みを数えることに基づいている。
論文 参考訳(メタデータ) (2021-12-03T15:45:12Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。