論文の概要: DispersioNET: Joint Inversion of Rayleigh-Wave Multimode Phase Velocity
Dispersion Curves using Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2310.14094v1
- Date: Sat, 21 Oct 2023 19:22:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 01:51:37.818420
- Title: DispersioNET: Joint Inversion of Rayleigh-Wave Multimode Phase Velocity
Dispersion Curves using Convolutional Neural Networks
- Title(参考訳): DispersioNET:畳み込みニューラルネットワークを用いたレイリー波多モード位相速度分散曲線のジョイントインバージョン
- Authors: Rohan Sharma, Divakar Vashisth and Bharath Shekar
- Abstract要約: DispersioNETは畳み込みニューラルネットワーク(CNN)に基づくディープラーニングモデルである
レイリー波の基本と高次モード位相速度分散曲線の合同反転を行う。
ノイズフリーおよび雑音分散曲線データセットの両方でトレーニングおよびテストを行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rayleigh wave dispersion curves have been widely used in near-surface
studies, and are primarily inverted for the shear wave (S-wave) velocity
profiles. However, the inverse problem is ill-posed, non-unique and nonlinear.
Here, we introduce DispersioNET, a deep learning model based on convolution
neural networks (CNN) to perform the joint inversion of Rayleigh wave
fundamental and higher order mode phase velocity dispersion curves.
DispersioNET is trained and tested on both noise-free and noisy dispersion
curve datasets and predicts S-wave velocity profiles that match closely with
the true velocities. The architecture is agnostic to variations in S-wave
velocity profiles such as increasing velocity with depth and intermediate
low-velocity layers, while also ensuring that the output remains independent of
the number of layers.
- Abstract(参考訳): レイリー波の分散曲線は表面近傍の研究で広く使われ、主にせん断波(S波)速度分布に逆転している。
しかし、逆問題は不当、不均一、非線形である。
本稿では、畳み込みニューラルネットワーク(CNN)に基づくディープラーニングモデルであるDispersioNETを紹介し、レイリー波の基本と高次モード位相速度分散曲線の結合反転を行う。
DispersioNETはノイズフリーとノイズの多い分散曲線のデータセットでトレーニングされ、真の速度と密接に一致するS波速度プロファイルを予測する。
アーキテクチャは、深さを伴う速度の増加や中間低速度層などのS波速度プロファイルの変動に非依存であり、出力が層数に依存しないことを保証する。
関連論文リスト
- Multi-frequency wavefield solutions for variable velocity models using meta-learning enhanced low-rank physics-informed neural network [3.069335774032178]
物理インフォームドニューラルネットワーク(PINN)は、複雑な速度モデルにおける多周波波場をモデル化する上で大きな課題に直面している。
本稿では,低ランクパラメータ化とメタラーニング,周波数埋め込みを組み合わせた新しいフレームワークMeta-LRPINNを提案する。
数値実験により,Meta-LRPINNはベースライン法に比べて高速に収束し,精度が高いことがわかった。
論文 参考訳(メタデータ) (2025-02-02T20:12:39Z) - DispFormer: Pretrained Transformer for Flexible Dispersion Curve Inversion from Global Synthesis to Regional Applications [59.488352977043974]
本研究では、レイリー波位相と群分散曲線から$v_s$プロファイルを反転させるトランスフォーマーベースのニューラルネットワークであるDispFormerを提案する。
結果は、ラベル付きデータなしでもゼロショットのDispFormerは、基底の真実とよく一致する逆プロファイルを生成することを示している。
論文 参考訳(メタデータ) (2025-01-08T09:08:24Z) - Data-driven localized waves and parameter discovery in the massive
Thirring model via extended physics-informed neural networks with interface
zones [3.522950356329991]
深層学習を用いた大規模Thiring(MT)モデルにおいて,データ駆動型局所波動解とパラメータ発見について検討した。
高次局所波解に対しては、拡張PINN(XPINN)とドメイン分解を用いる。
実験結果から, XPINNsの改良により, 収束速度が速く, 計算の複雑さを低減できることがわかった。
論文 参考訳(メタデータ) (2023-09-29T13:50:32Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - WaveFit: An Iterative and Non-autoregressive Neural Vocoder based on
Fixed-Point Iteration [47.07494621683752]
本研究では,TextitWaveFitと呼ばれる高速で高品質なニューラルボコーダを提案する。
WaveFitは、GANの本質を固定点反復に基づくDDPMのような反復フレームワークに統合します。
主観的聴力試験では,人間の自然な発話と5つの反復によるWaveFitで合成された音声の自然性に統計的に有意な差は認められなかった。
論文 参考訳(メタデータ) (2022-10-03T15:45:05Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
物理インフォームドニューラルネットワーク(PINN)アルゴリズムは、偏微分方程式(PDE)を含む幅広い問題を解く上で有望な結果を示している。
彼らはしばしば、スペクトルバイアスと呼ばれる現象のために、ターゲット関数が高周波の特徴を含むとき、望ましい解に収束しない。
本研究は, 運動量による勾配降下下で進化するPINNのトレーニングダイナミクスを, NTK(Neural Tangent kernel)を用いて研究するものである。
論文 参考訳(メタデータ) (2022-06-29T19:03:10Z) - Seismic wave propagation and inversion with Neural Operators [7.296366040398878]
我々は、最近開発されたNeural Operatorと呼ばれる機械学習パラダイムを用いて、一般的なソリューションを学習するためのプロトタイプフレームワークを開発した。
訓練されたニューラル演算子は、任意の速度構造やソース位置について、無視可能な時間で解を計算することができる。
本手法を2次元音響波動方程式を用いて説明し, 地震トモグラフィへの適用性を実証する。
論文 参考訳(メタデータ) (2021-08-11T19:17:39Z) - Accurate and Robust Deep Learning Framework for Solving Wave-Based
Inverse Problems in the Super-Resolution Regime [1.933681537640272]
本稿では,すべての長さスケールにわたる逆波散乱問題を包括的に解決するエンドツーエンドのディープラーニングフレームワークを提案する。
本フレームワークは,新たに導入された広帯域バタフライネットワークと,トレーニング中に動的にノイズを注入する簡単なトレーニング手順から構成される。
論文 参考訳(メタデータ) (2021-06-02T13:30:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。