論文の概要: Least-Squares-Embedded Optimization for Accelerated Convergence of PINNs in Acoustic Wavefield Simulations
- arxiv url: http://arxiv.org/abs/2504.16553v1
- Date: Wed, 23 Apr 2025 09:32:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.067743
- Title: Least-Squares-Embedded Optimization for Accelerated Convergence of PINNs in Acoustic Wavefield Simulations
- Title(参考訳): 音響波動場シミュレーションにおけるPINNの高速化のための最小二乗組込み最適化
- Authors: Mohammad Mahdi Abedi, David Pardo, Tariq Alkhalifah,
- Abstract要約: PINNは偏微分方程式の解法において有望であることを示した。
ヘルムホルツ方程式に基づく散乱音場シミュレーションでは,ハイブリッド最適化の枠組みを導出する。
このフレームワークは、最小二乗(LS)ソルバをGD損失関数に直接埋め込むことで、トレーニング収束を加速する。
- 参考スコア(独自算出の注目度): 2.8948274245812327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Networks (PINNs) have shown promise in solving partial differential equations (PDEs), including the frequency-domain Helmholtz equation. However, standard training of PINNs using gradient descent (GD) suffers from slow convergence and instability, particularly for high-frequency wavefields. For scattered acoustic wavefield simulation based on Helmholtz equation, we derive a hybrid optimization framework that accelerates training convergence by embedding a least-squares (LS) solver directly into the GD loss function. This formulation enables optimal updates for the linear output layer. Our method is applicable with or without perfectly matched layers (PML), and we provide practical tensor-based implementations for both scenarios. Numerical experiments on benchmark velocity models demonstrate that our approach achieves faster convergence, higher accuracy, and improved stability compared to conventional PINN training. In particular, our results show that the LS-enhanced method converges rapidly even in cases where standard GD-based training fails. The LS solver operates on a small normal matrix, ensuring minimal computational overhead and making the method scalable for large-scale wavefield simulations.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、周波数領域ヘルムホルツ方程式を含む偏微分方程式(PDE)を解くことを約束している。
しかし、勾配降下(GD)を用いたPINNの標準訓練は、特に高周波波動場において、緩やかな収束と不安定性に悩まされる。
ヘルムホルツ方程式に基づく散乱音響波動場シミュレーションでは、最小二乗(LS)ソルバをGD損失関数に直接埋め込むことで、トレーニング収束を加速するハイブリッド最適化フレームワークを導出する。
この定式化は線形出力層の最適更新を可能にする。
提案手法は完全整合層 (PML) に適用可能であるか, 適用しないか, 両方のシナリオに対して実用的なテンソルベースの実装を提供する。
ベンチマーク速度モデルによる数値実験により,本手法は従来のPINN訓練よりも高速な収束,高精度,安定性の向上を実現することが示された。
特に,標準GDベースのトレーニングが失敗した場合においても,LS法は急速に収束することを示す。
LSソルバは小さな正規行列上で動作し、計算オーバーヘッドを最小限に抑え、大規模波動場シミュレーションに拡張性を持たせる。
関連論文リスト
- Gabor-Enhanced Physics-Informed Neural Networks for Fast Simulations of Acoustic Wavefields [2.8948274245812327]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式の解法として注目されている。
本稿ではGabor関数を組み込んだ簡易なPINNフレームワークを提案する。
従来の PINN とガボルベース PINN と比較して, 精度, 収束性, 堅牢性を向上した。
論文 参考訳(メタデータ) (2025-02-24T13:25:40Z) - Training Neural ODEs Using Fully Discretized Simultaneous Optimization [2.290491821371513]
ニューラルネットワークの正規微分方程式(Neural ODEs)の学習には、各エポックにおける微分方程式の解法が必要であるため、計算コストが高い。
特に、コロケーションに基づく完全に離散化された定式化を採用し、大規模な非線形最適化にIPOPT-aソルバを用いる。
この結果から,(コロケーションをベースとした)同時ニューラルODE訓練パイプラインの可能性が示唆された。
論文 参考訳(メタデータ) (2025-02-21T18:10:26Z) - Multi-frequency wavefield solutions for variable velocity models using meta-learning enhanced low-rank physics-informed neural network [3.069335774032178]
物理インフォームドニューラルネットワーク(PINN)は、複雑な速度モデルにおける多周波波場をモデル化する上で大きな課題に直面している。
本稿では,低ランクパラメータ化とメタラーニング,周波数埋め込みを組み合わせた新しいフレームワークMeta-LRPINNを提案する。
数値実験により,Meta-LRPINNはベースライン法に比べて高速に収束し,精度が高いことがわかった。
論文 参考訳(メタデータ) (2025-02-02T20:12:39Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
圧縮可能なNavier-Stokes方程式を解くためのエンドツーエンドの微分可能なフレームワークを提案する。
この統合アプローチは、微分可能不連続なガレルキン解法とニューラルネットワークのソース項を組み合わせる。
提案するフレームワークの性能を2つの例で示す。
論文 参考訳(メタデータ) (2023-10-29T04:26:23Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions [47.276004075767176]
ReLUアクティベーション機能を持つ2層ニューラルネットワークの凸最適化のためのソフトウェアを開発した。
本稿では,凸ゲート型ReLUモデルにおいて,ReLUトレーニング問題に対するデータ依存アルゴリズムが得られたことを示す。
論文 参考訳(メタデータ) (2022-02-02T23:50:53Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。