論文の概要: Learning Efficient Surrogate Dynamic Models with Graph Spline Networks
- arxiv url: http://arxiv.org/abs/2310.16397v1
- Date: Wed, 25 Oct 2023 06:32:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 16:16:41.174651
- Title: Learning Efficient Surrogate Dynamic Models with Graph Spline Networks
- Title(参考訳): グラフスプラインネットワークを用いた効率的な代理モデル学習
- Authors: Chuanbo Hua, Federico Berto, Michael Poli, Stefano Massaroli, Jinkyoo
Park
- Abstract要約: 物理システムの予測を高速化する新しいディープラーニング手法であるGraphSplineNetsを提案する。
本手法は,時間と空間における任意の位置での応答を効率的に予測するために,2つの微分可能なスプラインコロケーション法を用いている。
- 参考スコア(独自算出の注目度): 28.018442945654364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While complex simulations of physical systems have been widely used in
engineering and scientific computing, lowering their often prohibitive
computational requirements has only recently been tackled by deep learning
approaches. In this paper, we present GraphSplineNets, a novel deep-learning
method to speed up the forecasting of physical systems by reducing the grid
size and number of iteration steps of deep surrogate models. Our method uses
two differentiable orthogonal spline collocation methods to efficiently predict
response at any location in time and space. Additionally, we introduce an
adaptive collocation strategy in space to prioritize sampling from the most
important regions. GraphSplineNets improve the accuracy-speedup tradeoff in
forecasting various dynamical systems with increasing complexity, including the
heat equation, damped wave propagation, Navier-Stokes equations, and real-world
ocean currents in both regular and irregular domains.
- Abstract(参考訳): 物理システムの複雑なシミュレーションは、工学や科学計算で広く使われているが、そのしばしば禁止される計算要件の低下は、ディープラーニングのアプローチによって最近取り組まれている。
本稿では,深層代理モデルのグリッドサイズと繰り返しステップ数を削減し,物理システムの予測を高速化する新しいディープラーニング手法であるGraphSplineNetsを提案する。
本手法は, 2つの微分可能な直交スプラインコロケーション法を用いて, 時間と空間の任意の位置における応答を効率的に予測する。
さらに,重要な領域からのサンプリングを優先するために,空間に適応的なコロケーション戦略を導入する。
GraphSplineNetsは、熱方程式、減衰波伝播、ナビエ・ストークス方程式、正規領域および不規則領域における実世界の海流など、複雑さを増す様々な力学系を予測する際の精度-スピードアップトレードオフを改善する。
関連論文リスト
- Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
本稿では,複雑なシステムにおける非線形力学の表現を強化するために,最適輸送理論と変位を利用した新しいリダクション・オーダー・モデル(ROM)を提案する。
複雑なシステム挙動の予測における精度と効率の向上を示し、計算物理学や工学における幅広い応用の可能性を示している。
論文 参考訳(メタデータ) (2024-11-13T16:29:33Z) - A parametric framework for kernel-based dynamic mode decomposition using deep learning [0.0]
提案されたフレームワークは、オフラインとオンラインの2つのステージで構成されている。
オンラインステージでは、これらのLANDOモデルを活用して、所望のタイミングで新しいデータを生成する。
高次元力学系に次元還元法を適用して, トレーニングの計算コストを低減させる。
論文 参考訳(メタデータ) (2024-09-25T11:13:50Z) - Space and Time Continuous Physics Simulation From Partial Observations [0.0]
大規模機械学習に基づくデータ駆動方式は、より直接的かつ効率的に長距離依存関係を統合することにより、高い適応性を約束する。
我々は流体力学に焦点をあて、正規格子や不規則格子の形で計算と予測の固定的サポートに基づく文献の大部分の欠点に対処する。
本研究では,空間的・時間的領域の連続的な領域において,スパース観測を訓練しながら予測を行う新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-17T13:24:04Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of
spatio-temporal processes [2.3694122563610924]
ラテント・ダイナミクス・ネットワーク(LDNet)は、非マルコフ力学系の低次元固有力学を発見できる。
LDNetは軽量で訓練が容易で、時間外挿方式でも精度と一般化性に優れている。
論文 参考訳(メタデータ) (2023-04-28T21:11:13Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
我々は、非定常連続体力学を推論するための新しいマルチスケールグラフニューラルネットワークモデルであるMultiScaleGNNを紹介する。
本手法は, 海洋および大気プロセスの基本的な現象である, 対流問題と非圧縮性流体力学について実証する。
MultiScaleGNNで得られたシミュレーションは、トレーニングされたシミュレーションよりも2~4桁高速である。
論文 参考訳(メタデータ) (2022-05-05T13:33:03Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。