論文の概要: Adaptive importance sampling for Deep Ritz
- arxiv url: http://arxiv.org/abs/2310.17185v2
- Date: Mon, 30 Oct 2023 11:42:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 19:11:48.776570
- Title: Adaptive importance sampling for Deep Ritz
- Title(参考訳): ディープリッツの適応的重要サンプリング
- Authors: Xiaoliang Wan and Tao Zhou and Yuancheng Zhou
- Abstract要約: 偏微分方程式(PDE)の解法を目的としたディープリッツ法の適応サンプリング法を提案する。
1つのネットワークはPDEの解を近似するために使用され、もう1つはトレーニングセットを洗練させるために新しいコロケーションポイントを生成するために使用される深層生成モデルである。
従来のDeep Ritz法と比較して、特に低正規性と高次元性で特徴づけられる問題に対して、提案手法は精度を向上する。
- 参考スコア(独自算出の注目度): 7.123920027048777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an adaptive sampling method for the Deep Ritz method aimed at
solving partial differential equations (PDEs). Two deep neural networks are
used. One network is employed to approximate the solution of PDEs, while the
other one is a deep generative model used to generate new collocation points to
refine the training set. The adaptive sampling procedure consists of two main
steps. The first step is solving the PDEs using the Deep Ritz method by
minimizing an associated variational loss discretized by the collocation points
in the training set. The second step involves generating a new training set,
which is then used in subsequent computations to further improve the accuracy
of the current approximate solution. We treat the integrand in the variational
loss as an unnormalized probability density function (PDF) and approximate it
using a deep generative model called bounded KRnet. The new samples and their
associated PDF values are obtained from the bounded KRnet. With these new
samples and their associated PDF values, the variational loss can be
approximated more accurately by importance sampling. Compared to the original
Deep Ritz method, the proposed adaptive method improves accuracy, especially
for problems characterized by low regularity and high dimensionality. We
demonstrate the effectiveness of our new method through a series of numerical
experiments.
- Abstract(参考訳): 本稿では,偏微分方程式(PDE)の解法を目的としたディープリッツ法の適応サンプリング手法を提案する。
2つの深いニューラルネットワークが使用される。
1つのネットワークはPDEの解を近似するために使用され、もう1つはトレーニングセットを洗練させるために新しいコロケーションポイントを生成するために使用される深層生成モデルである。
適応サンプリング手順は2つの主要なステップから構成される。
最初のステップは、トレーニングセットのコロケーションポイントによって識別される関連する変分損失を最小限にして、ディープリッツ法を用いてPDEを解くことである。
2番目のステップは、次の計算で使われる新しいトレーニングセットを生成し、現在の近似解の精度をさらに向上させる。
変分損失の積分を非正規化確率密度関数(PDF)として扱い、境界KRnetと呼ばれる深い生成モデルを用いて近似する。
新しいサンプルとその関連するpdf値は、bounded krnetから得られる。
これらの新しいサンプルとその関連PDF値により、重要サンプリングによりより正確に変分損失を近似することができる。
従来のDeep Ritz法と比較して,提案手法は精度を向上し,特に低正規性と高次元性に特徴付けられる問題に対して有効である。
本稿では,本手法の有効性を数値実験により実証する。
関連論文リスト
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Deep adaptive sampling for surrogate modeling without labeled data [4.047684532081032]
代理モデリングのための深層適応サンプリング法(textDAS2$)を提案する。
パラメトリック設定では、残留損失関数は非正規化確率密度関数とみなすことができる。
新しいサンプルは残留誘起分布と一致し、洗練されたトレーニングセットは統計誤差をさらに減らすことができる。
論文 参考訳(メタデータ) (2024-02-17T13:44:02Z) - Variational Density Propagation Continual Learning [0.0]
現実世界にデプロイされるディープニューラルネットワーク(DNN)は、定期的にオフ・オブ・ディストリビューション(OoD)データの対象となっている。
本稿では,ベンチマーク連続学習データセットによってモデル化されたデータ分散ドリフトに適応するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-22T21:51:39Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs [2.526490864645154]
ニューラルネットワークモデルにより与えられた近似解とトレーニングセットのランダムサンプルを同時に最適化する新しいminmax式を提案する。
鍵となる考え方は、深層生成モデルを用いてトレーニングセット内のランダムサンプルを調整し、近似されたPDE解によって誘導される残差が滑らかなプロファイルを維持することである。
論文 参考訳(メタデータ) (2023-05-30T02:59:18Z) - A DeepParticle method for learning and generating aggregation patterns
in multi-dimensional Keller-Segel chemotaxis systems [3.6184545598911724]
ケラー・セガル (KS) ケモタキシー系の2次元および3次元における凝集パターンと近傍特異解の正則化相互作用粒子法について検討した。
さらに,物理パラメータの異なる解を学習し,生成するためのDeepParticle (DP) 法を開発した。
論文 参考訳(メタデータ) (2022-08-31T20:52:01Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - DAS: A deep adaptive sampling method for solving partial differential
equations [2.934397685379054]
偏微分方程式(PDE)を解くための深層適応サンプリング法(DAS)を提案する。
深部ニューラルネットワークを用いてPDEの解を近似し、深部生成モデルを用いてトレーニングセットを洗練させる新しいコロケーションポイントを生成する。
そこで本研究では,DAS法が誤差境界を低減し,数値実験によりその有効性を実証できることを示す理論的解析を行った。
論文 参考訳(メタデータ) (2021-12-28T08:37:47Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
ランダムサンプリングではなく,ZO最適化における摂動を生成するためのサンプリングポリシを学習する,新たな強化学習ベースのZOアルゴリズムを提案する。
その結果,ZO-RLアルゴリズムはサンプリングポリシを学習することでZO勾配の分散を効果的に低減し,既存のZOアルゴリズムよりも高速に収束できることが示唆された。
論文 参考訳(メタデータ) (2021-04-09T14:50:59Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
二進的アクティベーションや二進的重みを持つニューラルネットワークでは、勾配降下によるトレーニングは複雑である。
そこで本研究では,サンプリングと解析近似を併用した新しい推定法を提案する。
勾配推定において高い精度を示し、深部畳み込みモデルにおいてより安定かつ優れた訓練を行うことを示す。
論文 参考訳(メタデータ) (2020-06-04T21:51:21Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。