論文の概要: Factor Fitting, Rank Allocation, and Partitioning in Multilevel Low Rank
Matrices
- arxiv url: http://arxiv.org/abs/2310.19214v1
- Date: Mon, 30 Oct 2023 00:52:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 13:30:47.648544
- Title: Factor Fitting, Rank Allocation, and Partitioning in Multilevel Low Rank
Matrices
- Title(参考訳): 多階低階行列における因子フィッティング、ランクアロケーション、パーティショニング
- Authors: Tetiana Parshakova, Trevor Hastie, Eric Darve, Stephen Boyd
- Abstract要約: フロベニウスノルムの MLR 行列によって与えられた行列を適合させる際に生じる3つの問題に対処する。
第一の問題は、MLR行列の因子を調整する因子フィッティングである。
2つ目はランクアロケーションで、各レベルにおけるブロックのランクを、与えられた値の合計ランクに基づいて選択する。
最終問題は、列と列の階層的な分割と、ランクと要素を選択することである。
- 参考スコア(独自算出の注目度): 43.644985364099036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider multilevel low rank (MLR) matrices, defined as a row and column
permutation of a sum of matrices, each one a block diagonal refinement of the
previous one, with all blocks low rank given in factored form. MLR matrices
extend low rank matrices but share many of their properties, such as the total
storage required and complexity of matrix-vector multiplication. We address
three problems that arise in fitting a given matrix by an MLR matrix in the
Frobenius norm. The first problem is factor fitting, where we adjust the
factors of the MLR matrix. The second is rank allocation, where we choose the
ranks of the blocks in each level, subject to the total rank having a given
value, which preserves the total storage needed for the MLR matrix. The final
problem is to choose the hierarchical partition of rows and columns, along with
the ranks and factors. This paper is accompanied by an open source package that
implements the proposed methods.
- Abstract(参考訳): 我々は、行列の和の行と列の置換として定義されるマルチレベル低階行列(MLR)を考える。
MLR行列は低階行列を拡張するが、総記憶量や行列ベクトル乗算の複雑さなど、その性質の多くを共有している。
フロベニウスノルムの MLR 行列によって与えられた行列を適合させる際に生じる3つの問題に対処する。
第一の問題は、MLR行列の因子を調整する因子フィッティングである。
2つ目はランクアロケーションであり、MLR行列に必要な総ストレージを保存するために、与えられた値の合計ランクに基づいて各レベルのブロックのランクを選択する。
最後の問題は、列と列の階層的な分割と、ランクと要素を選択することである。
本稿では,提案手法を実装したオープンソースパッケージについて述べる。
関連論文リスト
- Fitting Multilevel Factor Models [41.38783926370621]
我々は,多段階因子モデルに適した期待最大化アルゴリズムの,新しい高速実装を開発する。
可逆PSD MLR行列の逆もまた、因子の間隔が同じMLR行列であることを示す。
線形時間と空間複素量を持つ拡張行列のコレスキー分解を計算するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-18T15:39:12Z) - Mutually-orthogonal unitary and orthogonal matrices [6.9607365816307]
実2重項系における拡張不可能な最大絡み合い基底の最小値と最大値はそれぞれ3と4であることを示す。
量子情報理論の応用として、実2量子系内の最大エンタングル基底の最小値と最大値はそれぞれ3と4であることを示す。
論文 参考訳(メタデータ) (2023-09-20T08:20:57Z) - One-sided Matrix Completion from Two Observations Per Row [95.87811229292056]
行列の欠落値を$XTX$で計算する自然アルゴリズムを提案する。
合成データの一方の回収と低被覆ゲノムシークエンシングについて,本アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2023-06-06T22:35:16Z) - Optimal Low-Rank Matrix Completion: Semidefinite Relaxations and
Eigenvector Disjunctions [6.537257913467247]
低ランク行列の完備化は、与えられた観測セットをできるだけ正確に回復する最小の複雑さの行列からなる。
新たな凸緩和は、既存の方法に比べて最大値を大幅に下げる。
論文 参考訳(メタデータ) (2023-05-20T22:04:34Z) - Learning idempotent representation for subspace clustering [7.6275971668447]
理想的な再構成係数行列は2つの特性を持つべきである: 1) ブロックは各ブロックが部分空間を示す対角線であり、2) 各ブロックは完全連結である。
我々は、正規化メンバシップ行列を近似した再構成係数を求めるために、等等表現(IDR)アルゴリズムを考案する。
合成と実世界の両方のデータセットで実施された実験は、IDRが効率的かつ効率的なサブスペースクラスタリングアルゴリズムであることを証明している。
論文 参考訳(メタデータ) (2022-07-29T01:39:25Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Identifiability in Exact Two-Layer Sparse Matrix Factorization [0.0]
スパース行列分解(sparse matrix factorization)は、L スパース因子 X(L) X(L--1) の積による行列 Z の近似の問題である。
本稿では,この問題に現れる識別可能性の問題に焦点をあてる。
論文 参考訳(メタデータ) (2021-10-04T07:56:37Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
非PSDおよび2乗根行列の次元削減法を提案する。
複数のダウンストリームタスクにこれらのテクニックをどのように使用できるかを示す。
論文 参考訳(メタデータ) (2021-06-16T04:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。