論文の概要: SeDe: Balancing Blockchain Privacy and Regulatory Compliance by Selective De-Anonymization
- arxiv url: http://arxiv.org/abs/2311.08167v3
- Date: Sat, 9 Mar 2024 16:01:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-17 17:10:47.116218
- Title: SeDe: Balancing Blockchain Privacy and Regulatory Compliance by Selective De-Anonymization
- Title(参考訳): SeDe: 選択的な匿名化によるブロックチェーンのプライバシと規制コンプライアンスのバランス
- Authors: Naveen Sahu, Mitul Gajera, Amit Chaudhary, Hamish Ivey-Law,
- Abstract要約: 我々は、Selective De-Anonymization (SeDe) と呼ばれる規制および準拠のフレームワークを確立することにより、プライバシ保護機能のバランスをとるフレームワークを提案する。
我々の技術は、匿名化の決定や制御を単一のエンティティに残さずに、複数のエンティティに分散させながら、それぞれのアクションに責任を負うことなく、これを実現する。
- 参考スコア(独自算出の注目度): 0.3749861135832073
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Privacy is one of the essential pillars for the widespread adoption of blockchains, but public blockchains are transparent by nature. Modern analytics techniques can easily subdue the pseudonymity feature of a blockchain user. Some applications have been able to provide practical privacy protections using privacy-preserving cryptography techniques. However, malicious actors have abused them illicitly, discouraging honest actors from using privacy-preserving applications as "mixing" user interactions and funds with anonymous bad actors, causing compliance and regulatory concerns. In this paper, we propose a framework that balances privacy-preserving features by establishing a regulatory and compliant framework called Selective De-Anonymization (SeDe). The adoption of this framework allows privacy-preserving applications on blockchains to de-anonymize illicit transactions by recursive traversal of subgraphs of linked transactions. Our technique achieves this without leaving de-anonymization decisions or control in the hands of a single entity but distributing it among multiple entities while holding them accountable for their respective actions. To instantiate, our framework uses threshold encryption schemes and Zero-Knowledge Proofs (ZKPs).
- Abstract(参考訳): プライバシはブロックチェーンの普及に不可欠な柱のひとつですが、公開ブロックチェーンは本質的に透過的です。
現代の分析技術は、ブロックチェーンユーザーの匿名性を簡単に抑制することができる。
一部のアプリケーションは、プライバシ保存暗号技術を使用して、実用的なプライバシ保護を提供することができた。
しかし、悪意のあるアクターはそれらを違法に悪用し、誠実なアクターがプライバシー保護アプリケーションの使用を「混合」ユーザインタラクションと匿名の悪アクターとの資金の混合」として禁止し、コンプライアンスと規制上の懸念を引き起こした。
本稿では,Selective De-Anonymization (SeDe) と呼ばれる規制および準拠のフレームワークを確立することにより,プライバシ保護機能のバランスをとるフレームワークを提案する。
このフレームワークの採用により、ブロックチェーン上のプライバシ保護アプリケーションは、リンクされたトランザクションのサブグラフの再帰的トラバースによって不正なトランザクションを匿名化することができる。
我々の技術は、匿名化の決定や制御を単一のエンティティに残さずに、複数のエンティティに分散させながら、それぞれのアクションに責任を負うことなく、これを実現する。
我々のフレームワークは、しきい値暗号スキームとZKP(Zero-Knowledge Proofs)を使用する。
関連論文リスト
- The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
本稿では,Byzantine-fault Tolerant(BFT)コンセンサスプロトコルを用いた,しきい値暗号とブロックチェーンのクラス間の相互作用について検討する。
しきい値暗号システムに対する既存のアプローチは、しきい値暗号プロトコルを実行するための少なくとも1つのメッセージ遅延の遅延オーバーヘッドを導入している。
しきい値が狭いブロックチェーンネイティブのしきい値暗号システムに対して,このオーバーヘッドを取り除く機構を提案する。
論文 参考訳(メタデータ) (2024-07-16T20:53:04Z) - Identity Chain [0.0]
IdentityChainは、プライバシと説明責任の原則を統合する新しいフレームワークである。
目標は、既存の規制に準拠しつつ、プライバシーを維持することだ。
プライバシーと説明責任は、暗号化の進歩がなければ一緒にはできないでしょう。
論文 参考訳(メタデータ) (2024-07-14T13:14:16Z) - CAKE: Sharing Slices of Confidential Data on Blockchain [1.481195148653669]
公開ブロックチェーンを含むシナリオにおいて、データの機密性を保証するために設計されたキー暗号化(CAKE)によるコントロールアクセス。
我々は、ロジスティクス領域内の現実のサイバーセキュリティプロジェクトにおいて、CAKEの応用を紹介する。
論文 参考訳(メタデータ) (2024-05-07T09:44:04Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - PTTS: Zero-Knowledge Proof-based Private Token Transfer System on Ethereum Blockchain and its Network Flow Based Balance Range Privacy Attack Analysis [0.0]
パブリックブロックチェーンのためのプライベートトークン転送システム(PTTS)を提案する。
提案するフレームワークでは,ゼロ知識ベースのプロトコルをZokratesを使用して設計し,当社のプライベートトークンスマートコントラクトに統合しています。
論文の第2部では、リプレイ攻撃やバランス範囲のプライバシ攻撃を含む、セキュリティとプライバシの分析を行っている。
論文 参考訳(メタデータ) (2023-08-29T09:13:31Z) - Enabling Data Confidentiality with Public Blockchains [5.749927436954179]
相互運用アプリケーション(MARTSIA)のためのトランザクションシステムに対するマルチオーソリティアプローチ
MARTSIAは、メッセージ部分のレベルで共有データの読み取りアクセス制御を可能にする。
Multi-Authority Attribute-Based Encryption (MA-ABE)に基づいて、MARTSIAはメッセージ部分のレベルで共有データの読み取りアクセス制御を可能にする。
論文 参考訳(メタデータ) (2023-08-04T13:21:48Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
アクション認識におけるプライバシー漏洩を緩和するための既存のアプローチは、ビデオデータセットのアクションラベルとともに、プライバシラベルを必要とする。
自己教師付き学習(SSL)の最近の進歩は、未ラベルデータの未発見の可能性を解き放ちつつある。
本稿では、プライバシーラベルを必要とせず、自己管理的な方法で、入力ビデオからプライバシー情報を除去する新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T02:56:40Z) - Reputation-based PoS for the Restriction of Illicit Activities on
Blockchain: Algorand Usecase [2.94824047753242]
近年では、ブロックチェーントランザクションデータに基づいて、さまざまな機械学習ベースのテクニックが、このような犯罪要素を検出することができる。
本稿では,上記の不正行為を検知したユーザに対する評価に基づく応答手法を提案する。
論文 参考訳(メタデータ) (2021-12-21T07:32:22Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - Second layer data governance for permissioned blockchains: the privacy
management challenge [58.720142291102135]
新型コロナウイルス(COVID-19)やエボラウイルス(エボラ出血熱)のようなパンデミックの状況では、医療データを共有することに関連する行動は、大規模な感染を避け、死亡者を減らすために重要である。
この意味において、許可されたブロックチェーン技術は、スマートコントラクトが管理する不変で統一された分散データベースを通じて、データのオーナシップ、透明性、セキュリティを提供する権利をユーザに与えるために登場します。
論文 参考訳(メタデータ) (2020-10-22T13:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。