論文の概要: Towards Autonomous Hypothesis Verification via Language Models with
Minimal Guidance
- arxiv url: http://arxiv.org/abs/2311.09706v1
- Date: Thu, 16 Nov 2023 09:34:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 15:37:58.542461
- Title: Towards Autonomous Hypothesis Verification via Language Models with
Minimal Guidance
- Title(参考訳): 最小誘導型言語モデルによる自律的仮説検証に向けて
- Authors: Shiro Takagi, Ryutaro Yamauchi, Wataru Kumagai
- Abstract要約: GPT-4は仮説とPythonのコードを生成するよう求められた。
これは有望な結果ですが、検証には欠陥がないことも分かりました。
これらの発見は、汎用的で自律的なAI研究者を開発するための継続的な調査の必要性を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 7.41244589428771
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research automation efforts usually employ AI as a tool to automate specific
tasks within the research process. To create an AI that truly conduct research
themselves, it must independently generate hypotheses, design verification
plans, and execute verification. Therefore, we investigated if an AI itself
could autonomously generate and verify hypothesis for a toy machine learning
research problem. We prompted GPT-4 to generate hypotheses and Python code for
hypothesis verification with limited methodological guidance. Our findings
suggest that, in some instances, GPT-4 can autonomously generate and validate
hypotheses without detailed guidance. While this is a promising result, we also
found that none of the verifications were flawless, and there remain
significant challenges in achieving autonomous, human-level research using only
generic instructions. These findings underscore the need for continued
exploration to develop a general and autonomous AI researcher.
- Abstract(参考訳): 研究自動化は通常、研究プロセス内の特定のタスクを自動化するツールとしてAIを使用する。
真に研究を行うaiを作成するには、仮説、設計検証計画、検証の実行を独立に生成する必要がある。
そこで我々は,AI自体がおもちゃの機械学習研究問題の仮説を自動生成し,検証できるかどうかを検討した。
我々はGPT-4に仮説とPythonコードを生成するよう促した。
以上の結果から,GPT-4は詳細なガイダンスを伴わずに仮説を自動生成し,検証することが可能であることが示唆された。
これは有望な結果ですが、検証には欠陥はなく、汎用的な指示だけで自律的な人間レベルの研究を実現する上で大きな課題が残っています。
これらの発見は、汎用的で自律的なAI研究者を開発するための継続的な調査の必要性を浮き彫りにしている。
関連論文リスト
- Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
言語基底タスク(NL-DAR)の文脈における診断誘導推論(DAR)について検討する。
パール構造因果モデルに基づくNL-DARの新しいモデリングフレームワークを提案する。
得られたデータセットを用いて,NL-DARにおける人間の意思決定過程を解析する。
論文 参考訳(メタデータ) (2024-09-09T06:55:37Z) - Towards Fully Autonomous Research Powered by LLMs: Case Study on Simulations [5.03859766090879]
本研究では,大規模言語モデルを用いた自律型シミュレーションエージェントの実現可能性について検討する。
高分子鎖配座のシミュレーション問題をケーススタディとして, 異なるLLMを用いたASAの性能評価を行った。
その結果,ASA-GPT-4oは指定された研究ミッションでほぼ不当に実行された。
論文 参考訳(メタデータ) (2024-08-28T03:48:05Z) - Autonomous LLM-driven research from data to human-verifiable research papers [0.0]
完全なステップワイズプロセスを通じてインタラクションをガイドする自動化プラットフォームを構築しています。
注釈付きデータのみを提供するモードでは、データペーパーは仮説を立て、計画を立て、分析コードを書き、解釈し、結果を生成し、解釈した。
我々は、トレーサビリティ、透明性、妥当性を高めながら、AIによる科学的発見の加速の可能性を示す。
論文 参考訳(メタデータ) (2024-04-24T23:15:49Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - Large Language Models for Automated Open-domain Scientific Hypotheses Discovery [50.40483334131271]
本研究は,社会科学の学術的仮説発見のための最初のデータセットを提案する。
従来のデータセットとは異なり、新しいデータセットには、(1)オープンドメインデータ(RAW Webコーパス)を観察として使用すること、(2)人間性にさらに新しい仮説を提案することが必要である。
パフォーマンス向上のための3つのフィードバック機構を含む,タスクのためのマルチモジュールフレームワークが開発されている。
論文 参考訳(メタデータ) (2023-09-06T05:19:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Sparks of Artificial General Intelligence: Early experiments with GPT-4 [66.1188263570629]
OpenAIが開発したGPT-4は、前例のない規模の計算とデータを使って訓練された。
我々は, GPT-4が数学, コーディング, ビジョン, 医学, 法学, 心理学などにまたがる, 新規で困難な課題を解くことを実証した。
我々は、GPT-4を人工知能(AGI)システムの早期(まだ未完成)版と見なすことができると信じている。
論文 参考訳(メタデータ) (2023-03-22T16:51:28Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - SIERRA: A Modular Framework for Research Automation and Reproducibility [6.1678491628787455]
本稿では,研究の加速と成果向上のための新しいフレームワークであるSIERRAを紹介する。
SIERRAは、独立変数上のクエリから実行可能な実験を生成するプロセスを自動化することで研究を加速する。
個々の研究者のニーズに応じてカスタマイズと拡張が容易なモジュラーアーキテクチャを採用している。
論文 参考訳(メタデータ) (2022-08-16T15:36:34Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Systematic Mapping Study on the Machine Learning Lifecycle [4.4090257489826845]
2005年から2020年にかけて出版された405の出版物は、5つの主要な研究トピック、31のサブトピックにマップされています。
少数の出版物がデータ管理とモデル生産の問題に焦点を合わせており、より多くの研究が全体論的観点からAIライフサイクルに対処すべきであると考えている。
論文 参考訳(メタデータ) (2021-03-11T11:44:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。