論文の概要: Task Scheduling Optimization from a Tensor Network Perspective
- arxiv url: http://arxiv.org/abs/2311.10433v1
- Date: Fri, 17 Nov 2023 10:10:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-20 14:53:19.198231
- Title: Task Scheduling Optimization from a Tensor Network Perspective
- Title(参考訳): テンソルネットワークの観点からのタスクスケジューリング最適化
- Authors: Alejandro Mata Ali, I\~nigo Perez Delgado, Beatriz Garc\'ia Markaida
and Aitor Moreno Fdez. de Leceta
- Abstract要約: 本稿では,量子インスパイアされたテンソルネットワーク技術を用いた産業プラントにおけるタスク最適化手法を提案する。
すべての可能な組み合わせで量子システムをシミュレートし、制約を満たすために想像上の時間進化と一連の投影を実行する。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel method for task optimization in industrial plants using
quantum-inspired tensor network technology. This method allows us to obtain the
best possible combination of tasks on a set of machines with a set of
constraints without having to evaluate all possible combinations. We will
simulate a quantum system with all possible combinations, perform an imaginary
time evolution and a series of projections to satisfy the constraints. We
improve its scalability by means of a compression method, an iterative
algorithm, and a genetic algorithm, and show the results obtained on simulated
cases.
- Abstract(参考訳): 本稿では,量子インスパイアされたテンソルネットワーク技術を用いた産業プラントにおけるタスク最適化手法を提案する。
本手法は,機械の集合上のタスクと制約の集合との最適な組み合わせを,すべての可能な組み合わせを評価することなく得られる。
すべての可能な組み合わせで量子システムをシミュレートし、制約を満たすために想像上の時間進化と一連の投影を実行する。
本稿では,圧縮法,反復アルゴリズム,遺伝的アルゴリズムを用いて拡張性を改善し,シミュレーションにより得られた結果を示す。
関連論文リスト
- Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
本稿では,低速な計算ノードに対して堅牢で,線形演算の近似計算と精度の両立が可能な分散コンピューティングフレームワークを提案する。
本稿では,復号化のための計算複雑性を低く保ちながら,実数値データを扱うための逐次復号アルゴリズムを提案する。
大規模行列乗算やブラックボックス最適化など,様々な文脈において,このフレームワークの潜在的な応用を実証する。
論文 参考訳(メタデータ) (2023-09-01T18:02:04Z) - Quantum-Inspired Approximations to Constraint Satisfaction Problems [0.0]
本稿では,ブールフーリエ解析の手法を用いて,構成を満たす新しいアルゴリズムを提案する。
このアプローチは、量子振幅増幅アルゴリズムに大きくインスパイアされている。
フーリエ領域の空間性によって効率よく得られる量子測定に類似した過程において、充足解を検索できることを実証する。
論文 参考訳(メタデータ) (2022-12-08T00:40:56Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
我々は、深層ニューラルネットワーク(DNN)を量子化重みでトレーニングするための新しいアルゴリズム、Annealed Skewed SGD - AskewSGDを開発した。
アクティブなセットと実行可能な方向を持つアルゴリズムとは異なり、AskewSGDは実行可能な全セットの下でのプロジェクションや最適化を避けている。
実験結果から,AskewSGDアルゴリズムは古典的ベンチマークの手法と同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-11-07T18:13:44Z) - Constructing Optimal Contraction Trees for Tensor Network Quantum
Circuit Simulation [1.2704529528199062]
量子回路シミュレーションにおける重要な問題の1つは、縮退木の構築である。
本稿では,最適な縮尺木を構築するための新しい時間アルゴリズムを提案する。
提案手法は、試験された量子回路の大部分において、優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2022-09-07T02:50:30Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Optimization of Robot Trajectory Planning with Nature-Inspired and
Hybrid Quantum Algorithms [0.0]
産業規模でロボット軌道計画問題を解く。
我々のエンドツーエンドソリューションは、高度に多目的なランダムキーアルゴリズムとモデル積み重ねとアンサンブル技術を統合している。
我々は、後者が我々のより大きなパイプラインにどのように統合され、問題に対する量子対応ハイブリッドソリューションを提供するかを示す。
論文 参考訳(メタデータ) (2022-06-08T02:38:32Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
本稿では,一般に局所的に制約された最適化問題に対する量子インスパイアされたテンソルネットワークに基づくアルゴリズムを提案する。
我々のアルゴリズムは、興味のある問題に対してハミルトニアンを構築し、量子問題に効果的にマッピングする。
本研究は,本手法の有効性と応用の可能性を示すものである。
論文 参考訳(メタデータ) (2022-03-29T05:44:07Z) - Simulation Paths for Quantum Circuit Simulation with Decision Diagrams [72.03286471602073]
決定図を用いて量子回路をシミュレートする際に選択される経路の重要性について検討する。
我々は、専用のシミュレーションパスを調査できるオープンソースのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-01T19:00:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。