論文の概要: Exploring Time Granularity on Temporal Graphs for Dynamic Link
Prediction in Real-world Networks
- arxiv url: http://arxiv.org/abs/2311.12255v1
- Date: Tue, 21 Nov 2023 00:34:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 02:30:51.000560
- Title: Exploring Time Granularity on Temporal Graphs for Dynamic Link
Prediction in Real-world Networks
- Title(参考訳): リアルタイムネットワークにおける動的リンク予測のための時間グラフ上の時間粒度探索
- Authors: Xiangjian Jiang, Yanyi Pu
- Abstract要約: 動的グラフニューラルネットワーク(DGNN)は、動的グラフ構造化データを処理するための主要なアプローチである。
本稿では,DGNNを訓練する際の時間粒度が動的グラフに与える影響について,広範な実験を通して検討する。
- 参考スコア(独自算出の注目度): 0.48346848229502226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic Graph Neural Networks (DGNNs) have emerged as the predominant
approach for processing dynamic graph-structured data. However, the influence
of temporal information on model performance and robustness remains
insufficiently explored, particularly regarding how models address prediction
tasks with different time granularities. In this paper, we explore the impact
of time granularity when training DGNNs on dynamic graphs through extensive
experiments. We examine graphs derived from various domains and compare three
different DGNNs to the baseline model across four varied time granularities. We
mainly consider the interplay between time granularities, model architectures,
and negative sampling strategies to obtain general conclusions. Our results
reveal that a sophisticated memory mechanism and proper time granularity are
crucial for a DGNN to deliver competitive and robust performance in the dynamic
link prediction task. We also discuss drawbacks in considered models and
datasets and propose promising directions for future research on the time
granularity of temporal graphs.
- Abstract(参考訳): 動的グラフニューラルネットワーク(DGNN)は、動的グラフ構造化データを処理するための主要なアプローチである。
しかしながら、モデルの性能と頑健性に対する時間的情報の影響は、特にモデルが時間的な粒度の異なる予測タスクをどのように扱うかに関して、十分に検討されていない。
本稿では,dgnnを動的グラフにトレーニングする場合の時間粒度の影響を広範囲な実験により検討する。
各種ドメインから派生したグラフについて検討し,3つの異なるDGNNと4つの異なる時間的粒度のベースラインモデルを比較した。
一般的な結論を得るために,時間粒度,モデルアーキテクチャ,負のサンプリング戦略の相互作用を主に検討する。
この結果から,DGNNが動的リンク予測タスクにおいて,競合的かつ堅牢な性能を実現するためには,高度なメモリ機構と適切な時間粒度が不可欠であることが判明した。
また、考慮されたモデルやデータセットの欠点を議論し、時間グラフの時間的粒度に関する今後の研究に期待できる方向性を提案する。
関連論文リスト
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - DTFormer: A Transformer-Based Method for Discrete-Time Dynamic Graph Representation Learning [38.53424185696828]
離散時間動的グラフ(DTDG)の表現学習は、時間的に変化するエンティティとその進化する接続のダイナミクスをモデル化するために広く応用されている。
本稿では,従来の GNN+RNN フレームワークから Transformer ベースのアーキテクチャへ移行した DTDG のための表現学習手法 DTFormer を提案する。
論文 参考訳(メタデータ) (2024-07-26T05:46:23Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - A survey of dynamic graph neural networks [26.162035361191805]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
論文 参考訳(メタデータ) (2024-04-28T15:07:48Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - DyExplainer: Explainable Dynamic Graph Neural Networks [37.16783248212211]
我々は,動的グラフニューラルネットワーク(GNN)を高速に説明するための新しいアプローチであるDyExplainerを提案する。
DyExplainerは動的なGNNバックボーンをトレーニングし、各スナップショットでグラフの表現を抽出する。
また,事前指導型正規化を実現するために,コントラスト学習技術によるアプローチも強化する。
論文 参考訳(メタデータ) (2023-10-25T05:26:33Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Analysis of different temporal graph neural network configurations on
dynamic graphs [0.0]
本研究の目的は,動的グラフ上での空間的時間的依存構造学習の質的解析を行うことにより,文献のギャップを解消することである。
優れたTGNの異なる変種について広範囲にわたるアブレーション研究を行い、その性能に寄与する主要な要因を同定する。
これらの目的を達成することで、動的グラフ解析のためのTGNの設計と最適化に関する貴重な知見を提供する。
論文 参考訳(メタデータ) (2023-05-02T00:07:33Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Temporal Domain Generalization with Drift-Aware Dynamic Neural Network [12.483886657900525]
ドリフト対応動的ニューラルネットワーク(DRAIN)フレームワークを用いた時間領域一般化を提案する。
具体的には、この問題を、データとモデル力学の関係を共同でモデル化するベイズ的枠組みに定式化する。
モデルパラメータとデータ分布の時間的ドリフトをキャプチャし、将来のデータなしで将来モデルを予測することができる。
論文 参考訳(メタデータ) (2022-05-21T20:01:31Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。