論文の概要: Tight Lieb-Robinson Bound for approximation ratio in Quantum Annealing
- arxiv url: http://arxiv.org/abs/2311.12732v1
- Date: Tue, 21 Nov 2023 17:15:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 23:36:48.337603
- Title: Tight Lieb-Robinson Bound for approximation ratio in Quantum Annealing
- Title(参考訳): 量子アニールの近似比に対するタイトリーブ-ロビンソン境界
- Authors: Arthur Braida, Simon Martiel and Ioan Todinca
- Abstract要約: 本稿では,QAのパラメータ化バージョンを新たに導入し,アルゴリズムの正確な1局所解析を実現する。
1局所解析を持つ線形スケジュールQAは0.7020以上の近似比を達成し、既知の1局所アルゴリズムよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum annealing (QA) holds promise for optimization problems in quantum
computing, especially for combinatorial optimization. This analog framework
attracts attention for its potential to address complex problems. Its
gate-based homologous, QAOA with proven performance, has brought lots of
attention to the NISQ era. Several numerical benchmarks try to classify these
two metaheuristics however, classical computational power highly limits the
performance insights. In this work, we introduce a new parametrized version of
QA enabling a precise 1-local analysis of the algorithm. We develop a tight
Lieb-Robinson bound for regular graphs, achieving the best-known numerical
value to analyze QA locally. Studying MaxCut over cubic graph as a benchmark
optimization problem, we show that a linear-schedule QA with a 1-local analysis
achieves an approximation ratio over 0.7020, outperforming any known 1-local
algorithms.
- Abstract(参考訳): 量子アニーリング(QA)は、特に組合せ最適化において、量子コンピューティングにおける最適化問題の公約を持っている。
このアナログフレームワークは複雑な問題に対処する可能性に注目を集めている。
ゲートベースのホモロジーであるQAOAは、NISQ時代に多くの注目を集めている。
いくつかの数値ベンチマークはこれらの2つのメタヒューリスティックを分類しようとするが、古典的な計算能力は性能の洞察を極めて制限する。
そこで本研究では,アルゴリズムの高精度な1局所解析が可能なQAのパラメータ化バージョンを提案する。
正規グラフに対するタイトなリーブ・ロビンソン境界を開発し、QAを局所的に解析するために最もよく知られた数値を得る。
ベンチマーク最適化問題としてMaxCutを用いた場合, 1-局所解析の線形スケジュールQAは0.7020以上の近似比を達成し, 既知の1-局所アルゴリズムより優れていることを示す。
関連論文リスト
- An Expressive Ansatz for Low-Depth Quantum Approximate Optimisation [0.23999111269325263]
量子近似最適化アルゴリズム(QAOA)は、最適化問題を解くために用いられるハイブリッド量子古典アルゴリズムである。
QAOAはNISQデバイスに実装できるが、物理的制限は回路深さを制限し、性能を低下させる。
この研究は、より古典的なパラメータをアンサッツに割り当て、低深さでの性能を改善するeXpressive QAOA (XQAOA)を導入している。
論文 参考訳(メタデータ) (2023-02-09T07:47:06Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
浅いQAOA回路の量子ビット数と線形にスケールするグラフ分解に基づく古典的アルゴリズムを提案する。
我々の結果は、QAOAによる量子アドバンテージの探索だけでなく、NISQプロセッサのベンチマークにも有用である。
論文 参考訳(メタデータ) (2021-12-21T12:41:31Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
量子近似最適化アルゴリズム(QAOA)とクォーディットを用いた相関クラスタリング問題について検討する。
具体的には、中性原子量子コンピュータを検討し、相関クラスタリングのためのフルスタックアプローチを提案する。
ゲート数によって定量化されるように、quditの実装はqubitエンコーディングよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-22T11:07:38Z) - Classically optimal variational quantum algorithms [0.0]
変分量子アルゴリズム(VQA)のようなハイブリッド量子古典アルゴリズムは、NISQコンピュータ上での実装に適している。
このレターでは、VQAの暗黙的なステップを拡張します。古典的なプリ計算サブルーチンは、古典的なアルゴリズムを非自明に使用して、問題インスタンス固有の変動量子回路を単純化、変換、特定することができます。
論文 参考訳(メタデータ) (2021-03-31T13:33:38Z) - Hybrid quantum-classical algorithms for approximate graph coloring [65.62256987706128]
量子近似最適化アルゴリズム(RQAOA)をMAX-$k$-CUTに適用する方法を示す。
任意のグラフに対するレベル-$1$QAOAとレベル-$1$RQAOAをシミュレートした,効率的な古典的シミュレーションアルゴリズムを構築する。
論文 参考訳(メタデータ) (2020-11-26T18:22:21Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Evaluation of QAOA based on the approximation ratio of individual
samples [0.0]
我々は、Max-Cut問題に適用されたQAOAの性能をシミュレートし、いくつかの古典的代替品と比較する。
QAOA計算複雑性理論のガイダンスが進化しているため、量子的優位性を求めるためのフレームワークを利用する。
論文 参考訳(メタデータ) (2020-06-08T18:00:18Z) - An adaptive quantum approximate optimization algorithm for solving
combinatorial problems on a quantum computer [0.0]
量子近似最適化アルゴリズム(QAOA)は、最適化問題を解くハイブリッド変分量子古典アルゴリズムである。
我々は,QAOAの反復バージョンを開発し,特定のハードウェア制約に適応することができる。
アルゴリズムをMax-Cutグラフのクラス上でシミュレートし、標準QAOAよりもはるかに高速に収束することを示す。
論文 参考訳(メタデータ) (2020-05-20T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。