論文の概要: Bayesian Approach to Linear Bayesian Networks
- arxiv url: http://arxiv.org/abs/2311.15610v1
- Date: Mon, 27 Nov 2023 08:10:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 16:40:53.523160
- Title: Bayesian Approach to Linear Bayesian Networks
- Title(参考訳): 線形ベイズネットワークへのベイズ的アプローチ
- Authors: Seyong Hwang, Kyoungjae Lee, Sunmin Oh, Gunwoong Park
- Abstract要約: 提案手法は, 部分共分散行列の逆数を用いて, 位相次数の各要素を逆方向と親方向から反復的に推定する。
提案手法は,BHLSM,LISTEN,TDアルゴリズムといった最先端の頻繁な手法より合成データの方が優れていることを示す。
- 参考スコア(独自算出の注目度): 3.8711489380602804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes the first Bayesian approach for learning high-dimensional
linear Bayesian networks. The proposed approach iteratively estimates each
element of the topological ordering from backward and its parent using the
inverse of a partial covariance matrix. The proposed method successfully
recovers the underlying structure when Bayesian regularization for the inverse
covariance matrix with unequal shrinkage is applied. Specifically, it shows
that the number of samples $n = \Omega( d_M^2 \log p)$ and $n = \Omega(d_M^2
p^{2/m})$ are sufficient for the proposed algorithm to learn linear Bayesian
networks with sub-Gaussian and 4m-th bounded-moment error distributions,
respectively, where $p$ is the number of nodes and $d_M$ is the maximum degree
of the moralized graph. The theoretical findings are supported by extensive
simulation studies including real data analysis. Furthermore the proposed
method is demonstrated to outperform state-of-the-art frequentist approaches,
such as the BHLSM, LISTEN, and TD algorithms in synthetic data.
- Abstract(参考訳): 本研究では,高次元線形ベイズネットワークを学習する最初のベイズ手法を提案する。
提案手法は, 部分共分散行列の逆行列を用いて, 位相秩序の各要素とその親要素を反復的に推定する。
提案手法は,不等縮の逆共分散行列に対するベイズ正規化を適用した場合に,基礎構造を復元する。
特に、サンプル数 $n = \omega(d_m^2 \log p)$ と $n = \omega(d_m^2 p^{2/m})$ は、サブガウジアンと4m番目の有界モーメント誤差分布を持つ線形ベイズネットワークを学習するのに十分であり、それぞれ$p$がノード数、$d_m$がモラル化グラフの最大度であることを示す。
理論的な知見は、実データ分析を含む広範なシミュレーション研究によって裏付けられている。
さらに, 合成データにおけるBHLSM, LISTEN, TDアルゴリズムなど, 最先端の頻繁な手法よりも優れていることを示す。
関連論文リスト
- Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
離散部分モジュラー問題を連続的に最適化するために,$textbfMA-OSMA$アルゴリズムを提案する。
また、一様分布を混合することによりKLの発散を効果的に活用する、プロジェクションフリーな$textbfMA-OSEA$アルゴリズムも導入する。
我々のアルゴリズムは最先端OSGアルゴリズムによって提供される$(frac11+c)$-approximationを大幅に改善する。
論文 参考訳(メタデータ) (2025-02-07T15:57:56Z) - Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
データサイズが大きくなるにつれて、イテレーションコストの削減が重要な目標になります。
科学計算における初期値問題の並列シミュレーションの成功に触発されて,タスクをサンプリングするための並列Picard法を提案する。
本研究は,動力学に基づくサンプリング・拡散モデルの科学的計算におけるシミュレーション手法の潜在的利点を強調した。
論文 参考訳(メタデータ) (2024-12-10T11:50:46Z) - Low-rank Bayesian matrix completion via geodesic Hamiltonian Monte Carlo on Stiefel manifolds [0.18416014644193066]
低ランクベイズ行列の効率的な計算を可能にするための新しいサンプリングベース手法を提案する。
提案手法は, 標準ギブスサンプリング器で発生するサンプリング困難を, 行列完備化に使用される一般的な2つの行列因子化のために解決することを示す。
数値的な例は、より優れた混合と定常分布への高速収束を含む優れたサンプリング性能を示す。
論文 参考訳(メタデータ) (2024-10-27T03:12:53Z) - Riemannian Optimization for Non-convex Euclidean Distance Geometry with Global Recovery Guarantees [6.422262171968397]
ユークリッド距離幾何学問題を解くために2つのアルゴリズムが提案されている。
第一のアルゴリズムは真の解に線形に収束する。
第2のアルゴリズムは、合成データと実データの両方で強い数値性能を示す。
論文 参考訳(メタデータ) (2024-10-08T21:19:22Z) - Dynamical System Identification, Model Selection and Model Uncertainty Quantification by Bayesian Inference [0.8388591755871735]
本研究では,時系列データから動的システム同定を行うためのMAPフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-30T12:16:52Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Distributed Variational Bayesian Algorithms Over Sensor Networks [6.572330981878818]
一般ベイズ推論問題に対する2つの新しい分散VBアルゴリズムを提案する。
提案アルゴリズムは、核融合センターで利用可能な全データに依存する集中型VBアルゴリズムとほぼ同等の性能を有する。
論文 参考訳(メタデータ) (2020-11-27T08:12:18Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
ktimes k$, rank-r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ sample。
我々は、$cal O(frackrepsilon2log2fracepsilon)$ sample, a number linear in the high dimension, and almost linear in the matrices, usually low, rank proofs.というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-30T19:10:32Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
有界非次元最適化のための差分プライベート(DP)アルゴリズムを提案する。
標準勾配法に対する経験的優位性について,2つの一般的なディープラーニング手法を実証する。
論文 参考訳(メタデータ) (2020-06-24T06:01:24Z) - Tractable Approximate Gaussian Inference for Bayesian Neural Networks [1.933681537640272]
本稿では,ベイズニューラルネットワークにおける抽出可能な近似ガウス推定(TAGI)を実現するための解析手法を提案する。
この手法はパラメータ数$n$に対して$mathcalO(n)$の計算複雑性を持ち、回帰および分類ベンチマークで実施されたテストは、同じネットワークアーキテクチャにおいて、勾配のバックプロパゲーションに依存する既存のメソッドのパフォーマンスと一致することを確認している。
論文 参考訳(メタデータ) (2020-04-20T13:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。