論文の概要: InfoPattern: Unveiling Information Propagation Patterns in Social Media
- arxiv url: http://arxiv.org/abs/2311.15642v1
- Date: Mon, 27 Nov 2023 09:12:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 16:26:14.343295
- Title: InfoPattern: Unveiling Information Propagation Patterns in Social Media
- Title(参考訳): InfoPattern: ソーシャルメディアにおける情報伝達パターンの展開
- Authors: Chi Han, Jialiang Xu, Manling Li, Hanning Zhang, Tarek Abdelzaher and
Heng Ji
- Abstract要約: InfoPatternは、言語と人間のイデオロギーの相互作用に焦点を当てている。
1) 反対のイデオロギーコミュニティからの反対反応をシミュレートするレッドチーム,(2) メッセージ中の政治的感情を識別するスタンス検出,(3) 情報伝播グラフの発見により,様々なコミュニティにおけるクレームの進化が時間とともに明らかにされる。
- 参考スコア(独自算出の注目度): 59.67008841974645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media play a significant role in shaping public opinion and
influencing ideological communities through information propagation. Our demo
InfoPattern centers on the interplay between language and human ideology. The
demo (Code: https://github.com/blender-nlp/InfoPattern ) is capable of: (1) red
teaming to simulate adversary responses from opposite ideology communities; (2)
stance detection to identify the underlying political sentiments in each
message; (3) information propagation graph discovery to reveal the evolution of
claims across various communities over time. (Live Demo:
https://incas.csl.illinois.edu/blender/About )
- Abstract(参考訳): ソーシャルメディアは世論の形成に重要な役割を果たし、情報伝達を通じてイデオロギーコミュニティに影響を与えている。
私たちのデモInfoPatternは、言語と人間のイデオロギーの相互作用に焦点を当てています。
デモ(コード: https://github.com/blender-nlp/InfoPattern )は、(1) 相手のイデオロギーコミュニティからの敵の反応をシミュレートするレッドチーム、(2) 各メッセージの下位の政治的感情を識別するスタンス検出、(3) 情報伝搬グラフの発見、そして、様々なコミュニティにおけるクレームの進化を明らかにする。
(ライブデモ:https://incas.csl.illinois.edu/blender/About)
関連論文リスト
- E-polis: A serious game for the gamification of sociological surveys [55.2480439325792]
E-polisは、若者の理想的な社会に関する意見を研究するための社会学的調査をゲーミフィケーションする真剣なゲームである。
このゲームは、社会正義や経済発展などの様々なトピックに関するデータを収集したり、市民のエンゲージメントを促進するために使用することができる。
論文 参考訳(メタデータ) (2023-11-01T18:25:13Z) - Social Media, Topic Modeling and Sentiment Analysis in Municipal
Decision Support [0.0]
ソーシャルメディアは市民の意見の最も重要な情報源の1つである。
本稿では,自治体の意思決定を念頭においてソーシャルメディア投稿を処理するためのフレームワークの試作について述べる。
論文 参考訳(メタデータ) (2023-08-08T08:27:57Z) - Leveraging Social Interactions to Detect Misinformation on Social Media [25.017602051478768]
新型コロナウイルスのパンデミックで生成されたデータセットを使って、この問題に対処する。
情報ソースの以前の評価に基づいて、信頼性または信頼性が低いとラベル付けされた情報を議論するツイートのカスケードを含む。
我々は、ネットワーク情報にも活用する。ホモフィリ原理に従えば、対話するユーザは、一般的に同様の話題に興味を持ち、同様の種類のニュースを拡散する、という仮説を立てる。
論文 参考訳(メタデータ) (2023-04-06T10:30:04Z) - EDSA-Ensemble: an Event Detection Sentiment Analysis Ensemble
Architecture [63.85863519876587]
Sentiment Analysisを使って、イベントに属する各メッセージの極性やイベント全体を理解することで、オンラインソーシャルネットワークにおける重要なトレンドやダイナミクスに関する一般的な感情や個人の感情をよりよく理解することができます。
本研究では,ソーシャルメディアから現在起きているイベントの極性検出を改善するために,イベント検出と知覚分析を用いた新しいアンサンブルアーキテクチャEDSA-Ensembleを提案する。
論文 参考訳(メタデータ) (2023-01-30T11:56:08Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
異種情報ソース上での自己教師型学習を対照的に提案し,それらの関係を明らかにするとともに,噂をよりよく特徴付ける。
我々はこの枠組みをSRD(Self-supervised Rumor Detection)と呼ぶ。
3つの実世界のデータセットに対する大規模な実験により、ソーシャルメディア上での噂の自動検出におけるSRDの有効性が検証された。
論文 参考訳(メタデータ) (2022-04-19T12:10:03Z) - Learning Ideological Embeddings from Information Cascades [11.898833102736255]
多次元イデオロギー空間における各ユーザのイデオロギー的傾きを学習するためのモデルを提案する。
本モデルは,多次元イデオロギー空間におけるソーシャルメディア利用者の政治的姿勢を学習することができる。
論文 参考訳(メタデータ) (2021-09-28T09:58:02Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Analysing Social Media Network Data with R: Semi-Automated Screening of
Users, Comments and Communication Patterns [0.0]
ソーシャルメディアプラットフォーム上でのコミュニケーションは、社会に広まりつつある。
フェイクニュース、ヘイトスピーチ、急進的要素は、この現代的なコミュニケーションの一部です。
これらのメカニズムとコミュニケーションパターンの基本的な理解は、負のコミュニケーション形態に対抗するのに役立つ。
論文 参考訳(メタデータ) (2020-11-26T14:52:01Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z) - A multi-layer approach to disinformation detection on Twitter [4.663548775064491]
我々は,Twitter拡散ネットワークの多層表現を用い,各層に対してグローバルネットワーク機能群を計算した。
米国とイタリアでそれぞれ共有されたニュースの拡散カスケードに対応する2つの大規模データセットによる実験結果から、単純なロジスティック回帰モデルにより、偽情報と主流ネットワークを高精度に分類できることが示されている。
当社のネットワークベースのアプローチは,ソーシャルメディアに拡散する誤解を招く有害な情報を検出するシステム開発への道を開く有用な洞察を提供すると考えている。
論文 参考訳(メタデータ) (2020-02-28T09:25:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。