論文の概要: Regularization by Texts for Latent Diffusion Inverse Solvers
- arxiv url: http://arxiv.org/abs/2311.15658v2
- Date: Tue, 16 Apr 2024 12:58:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 23:45:27.883772
- Title: Regularization by Texts for Latent Diffusion Inverse Solvers
- Title(参考訳): 遅延拡散逆解法のためのテキストによる正規化
- Authors: Jeongsol Kim, Geon Yeong Park, Hyungjin Chung, Jong Chul Ye,
- Abstract要約: テキストによる正規化による新しい潜伏拡散逆解法(TReg)を提案する。
具体的には、TRegは逆拡散サンプリング中に解の先入観をテキストで記述する。
包括的実験の結果,TRegは逆問題における曖昧さを軽減し,その有効性と精度を高めることができた。
- 参考スコア(独自算出の注目度): 55.97917698941313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent advent of diffusion models has led to significant progress in solving inverse problems, leveraging these models as effective generative priors. Nonetheless, there remain challenges related to the ill-posed nature of such problems, often due to inherent ambiguities in measurements or intrinsic system symmetries. To address this, drawing inspiration from the human ability to resolve visual ambiguities through perceptual biases, here we introduce a novel latent diffusion inverse solver by regularization by texts (TReg). Specifically, TReg applies the textual description of the preconception of the solution during the reverse diffusion sampling, of which the description is dynamically reinforced through null-text optimization for adaptive negation. Our comprehensive experimental results demonstrate that TReg successfully mitigates ambiguity in the inverse problems, enhancing their effectiveness and accuracy.
- Abstract(参考訳): 近年の拡散モデルの出現は、これらのモデルを効果的な生成前駆体として活用することで、逆問題の解決に大きな進歩をもたらした。
しかしながら、そのような問題の本質が不明確で、しばしば測定や本質的なシステム対称性に固有の曖昧さのために、課題が残されている。
そこで本研究では,人間の視覚的あいまいさを知覚バイアスによって解決する能力からインスピレーションを得て,テキストによる正規化による新しい潜伏拡散逆解法(TReg)を提案する。
具体的には、TRegは、逆拡散サンプリング中に解の先入観をテキストで記述し、適応否定のためのヌルテキスト最適化によって動的に記述を補強する。
包括的実験の結果,TRegは逆問題における曖昧さを軽減し,その有効性と精度を高めることができた。
関連論文リスト
- G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
本稿では,従来の離散拡散に基づく画像生成モデルを活用することによって,線形逆問題に対処する新しい手法を提案する。
我々の知る限りでは、これは画像逆問題を解決するために離散拡散モデルに基づく先行手法を使う最初のアプローチである。
論文 参考訳(メタデータ) (2024-10-09T06:18:25Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - Stability and Generalizability in SDE Diffusion Models with Measure-Preserving Dynamics [11.919291977879801]
逆問題では、測定やデータから因果因子を推定する過程を記述する。
拡散モデルは、逆問題を解決する強力な生成ツールとして期待されている。
論文 参考訳(メタデータ) (2024-06-19T15:55:12Z) - ODE-DPS: ODE-based Diffusion Posterior Sampling for Inverse Problems in Partial Differential Equation [1.8356973269166506]
本稿では, PDE から生じる逆問題を解決するために, 教師なし逆転法を提案する。
提案手法はベイズ逆転フレームワーク内で動作し,後続分布の解法を条件付き生成過程として扱う。
インバージョン結果の精度を高めるために,ODEベースの拡散インバージョンアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-21T00:57:13Z) - Debiasing Text-to-Image Diffusion Models [84.46750441518697]
学習ベースのテキスト・トゥ・イメージ(TTI)モデルは、さまざまなドメインで視覚コンテンツを生成する方法に革命をもたらした。
近年の研究では、現在最先端のTTIシステムに非無視的な社会的バイアスが存在することが示されている。
論文 参考訳(メタデータ) (2024-02-22T14:33:23Z) - Text Diffusion with Reinforced Conditioning [92.17397504834825]
本稿では,テキスト拡散モデルを完全に解析し,トレーニング中の自己条件の劣化と,トレーニングとサンプリングのミスアライメントの2つの重要な限界を明らかにする。
そこで本研究では, TRECと呼ばれる新しいテキスト拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-02-19T09:24:02Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
近年の拡散モデルは、特定の逆問題に対して再訓練することなく、ノイズの多い線形逆問題に対する有望なゼロショット解を提供する。
この発見に触発されて、我々は、最大推定値から決定されるより原理化された共分散を用いて、最近の手法を改善することを提案する。
論文 参考訳(メタデータ) (2024-02-03T13:35:39Z) - Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems [8.33626757808923]
本稿では,新しいデータ駆動型パラダイムであるConvex Latent-d Adrial Regularizers (CLEAR)を紹介する。
CLEARは、ディープラーニング(DL)と変分正規化の融合を表す。
本手法は従来型のデータ駆動手法と従来型の正規化手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-09-17T12:06:04Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
画素空間におけるトレーニング拡散モデルは、データ集約的かつ計算的に要求される。
非常に低次元空間で動作する潜在拡散モデルは、これらの課題に対する解決策を提供する。
我々は,事前学習した潜在拡散モデルを用いて,一般的な逆問題を解決するアルゴリズムであるtextitReSampleを提案する。
論文 参考訳(メタデータ) (2023-07-16T18:42:01Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。