論文の概要: Fixed point actions from convolutional neural networks
- arxiv url: http://arxiv.org/abs/2311.17816v1
- Date: Wed, 29 Nov 2023 17:10:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 13:01:47.243284
- Title: Fixed point actions from convolutional neural networks
- Title(参考訳): 畳み込みニューラルネットワークからの固定点作用
- Authors: Kieran Holland, Andreas Ipp, David I. M\"uller, Urs Wenger
- Abstract要約: 格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)は任意の形状のウィルソンループを形成するために用いられる。
我々はL-CNNを用いて、再正規化群変換に基づく固定点(FP)動作を記述する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lattice gauge-equivariant convolutional neural networks (L-CNNs) can be used
to form arbitrarily shaped Wilson loops and can approximate any gauge-covariant
or gauge-invariant function on the lattice. Here we use L-CNNs to describe
fixed point (FP) actions which are based on renormalization group
transformations. FP actions are classically perfect, i.e., they have no lattice
artifacts on classical gauge-field configurations satisfying the equations of
motion, and therefore possess scale invariant instanton solutions. FP actions
are tree-level Symanzik-improved to all orders in the lattice spacing and can
produce physical predictions with very small lattice artifacts even on coarse
lattices. We find that L-CNNs are much more accurate at parametrizing the FP
action compared to older approaches. They may therefore provide a way to
circumvent critical slowing down and topological freezing towards the continuum
limit.
- Abstract(参考訳): 格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)は任意の形状のウィルソンループを形成することができ、格子上のゲージ共変関数やゲージ不変関数を近似することができる。
ここでは、再正規化群変換に基づく固定点(FP)作用を記述するためにL-CNNを用いる。
fp作用は古典的に完全であり、すなわち、古典的ゲージ場構成上の格子アーティファクトが運動方程式を満たすため、スケール不変なインスタントン解を持つ。
FP アクションは、格子間隔の全ての順序に改善されたツリーレベルシマンジックであり、粗い格子でさえ非常に小さな格子アーチファクトで物理的予測を生成することができる。
従来のアプローチに比べて,L-CNNはFP作用のパラメトリゼーションにおいてはるかに正確であることがわかった。
したがって、臨界的な減速や位相的凍結を回避し、連続体限界に向かって凍らせることができる。
関連論文リスト
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
論文 参考訳(メタデータ) (2024-11-21T14:19:32Z) - Scalable Graph Compressed Convolutions [68.85227170390864]
ユークリッド畳み込みのための入力グラフのキャリブレーションに置換を適用する微分可能手法を提案する。
グラフキャリブレーションに基づいて,階層型グラフ表現学習のための圧縮畳み込みネットワーク(CoCN)を提案する。
論文 参考訳(メタデータ) (2024-07-26T03:14:13Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - NeuraLUT: Hiding Neural Network Density in Boolean Synthesizable Functions [2.7086888205833968]
Field-Programmable Gate Array (FPGA)アクセラレータは、レイテンシとリソースクリティカルなDeep Neural Network (DNN)推論タスクの処理に成功している。
本稿では、ニューロンの境界を緩和し、サブネットワーク全体を単一のLUTにマッピングすることを提案する。
提案手法は,既知の遅延クリティカルタスク,ジェットサブストラクチャタグ,古典的コンピュータビジョンタスク,MNISTを用いた桁分類で検証する。
論文 参考訳(メタデータ) (2024-02-29T16:10:21Z) - Scalable Neural Network Kernels [22.299704296356836]
我々は、通常のフィードフォワード層(FFL)を近似できるスケーラブルニューラルネットワークカーネル(SNNK)を導入する。
また、深層ニューラルネットワークアーキテクチャのコンパクト化にSNNKを適用するニューラルネットワークバンドルプロセスについても紹介する。
我々のメカニズムは、競争精度を維持しながら、トレーニング可能なパラメータの最大5倍の削減を可能にする。
論文 参考訳(メタデータ) (2023-10-20T02:12:56Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Applications of Lattice Gauge Equivariant Neural Networks [0.0]
格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)
L-CNNは従来のニューラルネットワークよりも、異なるサイズの格子をより一般化することができる。
我々はL-CNNのWilsonフローや連続正規化フローへの応用の可能性について述べる。
論文 参考訳(メタデータ) (2022-12-01T19:32:42Z) - Orthogonal Graph Neural Networks [53.466187667936026]
グラフニューラルネットワーク(GNN)は,ノード表現の学習において優れていたため,大きな注目を集めている。
より畳み込み層を積み重ねることで、GNNのパフォーマンスが大幅に低下する。
本稿では,モデルトレーニングの安定化とモデル一般化性能の向上のために,既存のGNNバックボーンを拡張可能なOrtho-GConvを提案する。
論文 参考訳(メタデータ) (2021-09-23T12:39:01Z) - Lattice gauge equivariant convolutional neural networks [0.0]
汎用機械学習アプリケーションのためのLattice gauge equivariant Convolutional Neural Networks (L-CNNs)を提案する。
L-CNNは従来の畳み込みニューラルネットワークでは見つけられないゲージ不変量を学習・一般化できることを示した。
論文 参考訳(メタデータ) (2020-12-23T19:00:01Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
ガウス・ニュートン近似は基礎となるベイズニューラルネットワーク(BNN)の局所線形化として理解されるべきである。
この線形化モデルを後部推論に使用するので、元のモデルではなく、この修正モデルを使用することも予測すべきである。
この修正された予測を"GLM predictive"と呼び、Laplace近似の共通不適合問題を効果的に解決することを示す。
論文 参考訳(メタデータ) (2020-08-19T12:35:55Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。