論文の概要: An Interventional Perspective on Identifiability in Gaussian LTI Systems
with Independent Component Analysis
- arxiv url: http://arxiv.org/abs/2311.18048v2
- Date: Fri, 16 Feb 2024 10:36:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 19:58:41.868897
- Title: An Interventional Perspective on Identifiability in Gaussian LTI Systems
with Independent Component Analysis
- Title(参考訳): 独立成分分析によるガウス型LTIシステムの識別可能性の一考察
- Authors: Goutham Rajendran, Patrik Reizinger, Wieland Brendel, Pradeep
Ravikumar
- Abstract要約: ガウス線形時間不変 (LTI) システムでは, 多様な干渉信号を導入することで, システムパラメータを同定できることが示されている。
隠れマルコフモデルと(ガウス) LTI 系が連続パラメータを持つコーサル・デ・フィネッティの定理を一般化することを示した。
- 参考スコア(独自算出の注目度): 44.892642197610215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the relationship between system identification and
intervention design in dynamical systems. While previous research demonstrated
how identifiable representation learning methods, such as Independent Component
Analysis (ICA), can reveal cause-effect relationships, it relied on a passive
perspective without considering how to collect data. Our work shows that in
Gaussian Linear Time-Invariant (LTI) systems, the system parameters can be
identified by introducing diverse intervention signals in a multi-environment
setting. By harnessing appropriate diversity assumptions motivated by the ICA
literature, our findings connect experiment design and representational
identifiability in dynamical systems. We corroborate our findings on synthetic
and (simulated) physical data. Additionally, we show that Hidden Markov Models,
in general, and (Gaussian) LTI systems, in particular, fulfil a generalization
of the Causal de Finetti theorem with continuous parameters.
- Abstract(参考訳): 動的システムにおけるシステム識別と介入設計の関係について検討する。
これまでの研究では、独立成分分析(ica)のような識別可能な表現学習手法が因果関係をいかに明らかにできるかが示されているが、データ収集の方法を考慮せずに受動的視点に依存していた。
本研究は,ガウス線形時間不変量 (lti) システムにおいて,多環境環境で多様な介入信号を導入することでシステムパラメータを同定できることを示す。
ica文献に動機づけられた適切な多様性の仮定を活用し,力学系における実験設計と表現識別性を結びつけた。
我々は、合成および(シミュレーション)物理データに関する知見を裏付ける。
さらに、隠れマルコフモデルや(ガウシアン) lti 系、特に連続パラメータを持つ因果的デ・フィニッティ定理の一般化について述べる。
関連論文リスト
- Identifiability Analysis of Linear ODE Systems with Hidden Confounders [45.14890063421295]
本稿では,隠れた共同設立者を組み込んだ線形ODEシステムにおける識別可能性の体系的解析について述べる。
最初のケースでは、潜伏した共同設立者は因果関係を示さないが、その進化は特定の形態に固執する。
その後、この分析を、隠れた共同創設者が因果依存性を示すシナリオにまで拡張する。
論文 参考訳(メタデータ) (2024-10-29T10:15:56Z) - InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
本研究では、ニューラルネットワークをベースとしたデータ駆動型フレームワークであるinVAErtネットワークを用いて、剛体力学系のディジタル双対解析を強化する。
InVAErtネットワークの柔軟性と有効性について,合成データから欠落成分を含む実データへの6成分ループ型パラメータ血行動態モデルの生理的逆転の文脈で示す。
論文 参考訳(メタデータ) (2024-08-15T17:07:40Z) - A VAE-based Framework for Learning Multi-Level Neural Granger-Causal
Connectivity [15.295157876811066]
本稿では, 関連系・異種系系の集合において, 成分間の顆粒・因果関係を共同で学習する変分オートエンコーダに基づくフレームワークを提案する。
提案するフレームワークの性能は,複数の合成データ設定に基づいて評価し,個別のシステム学習用に設計された既存手法と比較した。
論文 参考訳(メタデータ) (2024-02-25T16:11:32Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErtは物理システムのデータ駆動分析と合成のためのフレームワークである。
これは、前方および逆写像を表す決定論的デコーダ、系の出力の確率分布を捉える正規化フロー、入力と出力の間の単射性の欠如についてコンパクトな潜在表現を学ぶ変分エンコーダを使用する。
論文 参考訳(メタデータ) (2023-07-24T07:58:18Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Systems Biology: Identifiability analysis and parameter identification
via systems-biology informed neural networks [5.104519140921464]
本稿では,パラメータ推定のためのシステム生物学情報ニューラルネットワークを提案する。
また,パラメータの識別可能性を分析するために,構造的および実用的識別可能性分析についても述べる。
論文 参考訳(メタデータ) (2022-02-03T17:40:03Z) - End-to-End Models for the Analysis of System 1 and System 2 Interactions
based on Eye-Tracking Data [99.00520068425759]
本稿では,よく知られたStroopテストの視覚的修正版において,様々なタスクと潜在的な競合事象を特定するための計算手法を提案する。
統計的分析により、選択された変数は、異なるシナリオにおける注意負荷の変動を特徴付けることができることが示された。
機械学習技術は,異なるタスクを分類精度良く区別できることを示す。
論文 参考訳(メタデータ) (2020-02-03T17:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。