Dynamical transition in controllable quantum neural networks with large depth
- URL: http://arxiv.org/abs/2311.18144v2
- Date: Sat, 05 Oct 2024 18:21:46 GMT
- Title: Dynamical transition in controllable quantum neural networks with large depth
- Authors: Bingzhi Zhang, Junyu Liu, Xiao-Chuan Wu, Liang Jiang, Quntao Zhuang,
- Abstract summary: We show that the training dynamics of quantum neural networks with a quadratic loss function can be described by the generalized Lotka-Volterra equations.
We show that a quadratic loss function within the frozen-error dynamics enables a speedup in the training convergence.
The theory findings are verified experimentally on IBM quantum devices.
- Score: 7.22617261255808
- License:
- Abstract: Understanding the training dynamics of quantum neural networks is a fundamental task in quantum information science with wide impact in physics, chemistry and machine learning. In this work, we show that the late-time training dynamics of quantum neural networks with a quadratic loss function can be described by the generalized Lotka-Volterra equations, which lead to a transcritical bifurcation transition in the dynamics. When the targeted value of loss function crosses the minimum achievable value from above to below, the dynamics evolve from a frozen-kernel dynamics to a frozen-error dynamics, showing a duality between the quantum neural tangent kernel and the total error. In both regions, the convergence towards the fixed point is exponential, while at the critical point becomes polynomial. We provide a non-perturbative analytical theory to explain the transition via a restricted Haar ensemble at late time, when the output state approaches the steady state. Via mapping the Hessian to an effective Hamiltonian, we also identify a linearly vanishing gap at the transition point. Compared with the linear loss function, we show that a quadratic loss function within the frozen-error dynamics enables a speedup in the training convergence. The theory findings are verified experimentally on IBM quantum devices.
Related papers
- Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Learning topological defects formation with neural networks in a quantum
phase transition [0.0]
We investigate the time evolutions, universal statistics, and correlations of topological defects in a one-dimensional transverse-field quantum Ising model.
We establish a universal power-law relationship between the first three cumulants of the kink numbers and the quench rate, indicating a binomial distribution of the kinks.
Finally, the normalized kink-kink correlations are also investigated and it is found that the numerical values are consistent with the analytic formula.
arXiv Detail & Related papers (2022-04-14T06:00:19Z) - Analytic theory for the dynamics of wide quantum neural networks [7.636414695095235]
We study the dynamics of gradient descent for the training error of a class of variational quantum machine learning models.
For random quantum circuits, we predict and characterize an exponential decay of the residual training error as a function of the parameters of the system.
arXiv Detail & Related papers (2022-03-30T23:24:06Z) - Representation Learning via Quantum Neural Tangent Kernels [10.168123455922249]
Variational quantum circuits are used in quantum machine learning and variational quantum simulation tasks.
Here we discuss these problems, analyzing variational quantum circuits using the theory of neural tangent kernels.
We analytically solve the dynamics in the frozen limit, or lazy training regime, where variational angles change slowly and a linear perturbation is good enough.
arXiv Detail & Related papers (2021-11-08T01:30:34Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
We study the limiting dynamics of deep neural networks trained with gradient descent (SGD)
We show that the key ingredient driving these dynamics is not the original training loss, but rather the combination of a modified loss, which implicitly regularizes the velocity and probability currents, which cause oscillations in phase space.
arXiv Detail & Related papers (2021-07-19T20:18:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Learning the ground state of a non-stoquastic quantum Hamiltonian in a
rugged neural network landscape [0.0]
We investigate a class of universal variational wave-functions based on artificial neural networks.
In particular, we show that in the present setup the neural network expressivity and Monte Carlo sampling are not primary limiting factors.
arXiv Detail & Related papers (2020-11-23T05:25:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.