論文の概要: Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
- arxiv url: http://arxiv.org/abs/2312.02849v2
- Date: Sun, 9 Jun 2024 01:19:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 04:28:28.901943
- Title: Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
- Title(参考訳): ワッサーシュタイン空間における多面体最適化による平均場変動推論のアルゴリズム
- Authors: Yiheng Jiang, Sinho Chewi, Aram-Alexandre Pooladian,
- Abstract要約: ワッサーシュタイン空間上の有限次元多面体部分集合の理論を開発し、一階法による函数の最適化を行う。
我々の主な応用は平均場変動推論の問題であり、これは分布の$pi$ over $mathbbRd$を製品測度$pistar$で近似しようとするものである。
- 参考スコア(独自算出の注目度): 10.292118864147097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space and optimization of functionals over them via first-order methods. Our main application is to the problem of mean-field variational inference, which seeks to approximate a distribution $\pi$ over $\mathbb{R}^d$ by a product measure $\pi^\star$. When $\pi$ is strongly log-concave and log-smooth, we provide (1) approximation rates certifying that $\pi^\star$ is close to the minimizer $\pi^\star_\diamond$ of the KL divergence over a \emph{polyhedral} set $\mathcal{P}_\diamond$, and (2) an algorithm for minimizing $\text{KL}(\cdot\|\pi)$ over $\mathcal{P}_\diamond$ with accelerated complexity $O(\sqrt \kappa \log(\kappa d/\varepsilon^2))$, where $\kappa$ is the condition number of $\pi$.
- Abstract(参考訳): ワッサーシュタイン空間上の有限次元多面体部分集合の理論を開発し、一階法による函数の最適化を行う。
我々の主な応用は平均場変動推論の問題であり、これは分布 $\pi$ over $\mathbb{R}^d$ を積測度 $\pi^\star$ で近似しようとするものである。
a \emph{polyhedral} set $\mathcal{P}_\diamond$, (2) $\text{KL}(\cdot\|\pi)$ over $\mathcal{P}_\diamond$ withAccelerated complexity $O(\sqrt \kappa \log(\kappa d/\varepsilon^2)$, $\appa$は$\pi$の条件である。
関連論文リスト
- Efficient Continual Finite-Sum Minimization [52.5238287567572]
連続有限サム最小化(continuous finite-sum minimization)と呼ばれる有限サム最小化の鍵となるツイストを提案する。
我々のアプローチは$mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$で大幅に改善されます。
また、$mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$という自然な一階法は存在しないことを証明し、この方法の第一階法がほぼ密であることを示す。
論文 参考訳(メタデータ) (2024-06-07T08:26:31Z) - Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity [22.615156512223763]
本研究では,有限サム構造を目的とする分散楽観的すべり(SVOGS)法を提案する。
我々は$mathcal O(delta D2/varepsilon)$、$mathcal O(n+sqrtndelta D2/varepsilon)$、$tildemathcal O(n+sqrtndelta+L)D2/varepsilon)$の局所呼び出しを証明している。
論文 参考訳(メタデータ) (2024-05-25T08:34:49Z) - On the Complexity of Finite-Sum Smooth Optimization under the
Polyak-{\L}ojasiewicz Condition [14.781921087738967]
本稿では、$min_bf xinmathbb Rd f(bf x)triangleq frac1nsum_i=1n f_i(bf x)$, ここで、$f(cdot)$はパラメータ$mu$と$f_i(cdot)_i=1n$は$L$-mean-squared smoothである。
論文 参考訳(メタデータ) (2024-02-04T17:14:53Z) - Faster Sampling from Log-Concave Distributions over Polytopes via a
Soft-Threshold Dikin Walk [28.431572772564518]
我々は、$d$-dimensional log-concave distribution $pi(theta) propto e-f(theta)$からポリトープ$K$に制約された$m$不等式をサンプリングする問題を考える。
我々の主な成果は、少なくとも$O((md + d L2 R2) times MDomega-1) log(fracwdelta)$ arithmetic operation to sample from $pi$ の "soft-warm' variant of the Dikin walk Markov chain" である。
論文 参考訳(メタデータ) (2022-06-19T11:33:07Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
積 $r:=p + q$, ここで$r$は$mu$-strong convex類似性である。
エージェントの通信やローカルコールにマスターされた問題を解決する方法を提案する。
提案手法は$mathcalO(sqrtL_q/mu)$法よりもはるかにシャープである。
論文 参考訳(メタデータ) (2022-05-30T14:28:02Z) - Sampling from Log-Concave Distributions with Infinity-Distance
Guarantees and Applications to Differentially Private Optimization [33.38289436686841]
本稿では,dis distributionO(varepsilon)$close から$ infinity-distance に点を出力するアルゴリズムを提案する。
また、ディキンウォークの「ソフトパイ」バージョンも提示する。
論文 参考訳(メタデータ) (2021-11-07T13:44:50Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
ガウス境界の下でのマスアートノイズ付きmathbbRd$におけるPAC学習ハーフスペースの問題について検討する。
この結果は,Massartモデルにおける学習ハーフスペースの複雑さを定性的に特徴づけるものである。
論文 参考訳(メタデータ) (2021-08-19T16:16:48Z) - Infinite-Horizon Offline Reinforcement Learning with Linear Function
Approximation: Curse of Dimensionality and Algorithm [46.36534144138337]
本稿では,オフライン強化学習におけるポリシー評価のサンプル複雑さについて検討する。
低分布シフトの仮定の下では、最大$oleft(maxleft fracleftvert thetapirightvert _24varepsilon4logfracddelta,frac1varepsilon2left(d+logfrac1deltaright)right right)$サンプルを必要とするアルゴリズムがあることを示す。
論文 参考訳(メタデータ) (2021-03-17T18:18:57Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
S$状態、$A$アクション、割引係数$gamma in (0,1)$、近似しきい値$epsilon > 0$の MDP が与えられた場合、$epsilon$-Optimal Policy を学ぶためのモデルなしアルゴリズムを提供する。
十分小さな$epsilon$の場合、サンプルの複雑さで改良されたアルゴリズムを示す。
論文 参考訳(メタデータ) (2020-06-06T13:34:41Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
有限和の有限ノイズ構造を利用して、大域オラクルモデルの下での一致する$O(n2)$-upper境界を導出する。
同様のアプローチを踏襲したSVRGの新規な適応法を提案し、これはオラクルと互換性があり、$tildeO(n2+nsqrtL/mu)log (1/epsilon)$と$O(nsqrtL/epsilon)$, for $mu>0$と$mu=0$の複雑さ境界を実現する。
論文 参考訳(メタデータ) (2020-02-09T03:39:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。