論文の概要: The Baldwin Effect in Advancing Generalizability of Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2312.03243v2
- Date: Mon, 16 Dec 2024 02:26:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:52:57.993260
- Title: The Baldwin Effect in Advancing Generalizability of Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークの一般化性向上におけるボールドウィン効果
- Authors: Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, Pao-Hsiung Chiu, Joshua Shao Zheng Low, My Ha Dao, Yew-Soon Ong,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、科学機械学習の最前線にある。
PINNは1つの物理タスクのために訓練されることが多く、新しいタスクごとに計算的に高価な再訓練を必要とする。
本稿では,ボールドウィン進化の枠組みを通じて,PINNの一般化可能性を高めるための先駆的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 22.57730294475146
- License:
- Abstract: Physics-informed neural networks (PINNs) are at the forefront of scientific machine learning, making possible the creation of machine intelligence that is cognizant of physical laws and able to accurately simulate them. However, today's PINNs are often trained for a single physics task and require computationally expensive re-training for each new task, even for tasks from similar physics domains. To address this limitation, this paper proposes a pioneering approach to advance the generalizability of PINNs through the framework of Baldwinian evolution. Drawing inspiration from the neurodevelopment of precocial species that have evolved to learn, predict and react quickly to their environment, we envision PINNs that are pre-wired with connection strengths inducing strong biases towards efficient learning of physics. A novel two-stage stochastic programming formulation coupling evolutionary selection pressure (based on proficiency over a distribution of physics tasks) with lifetime learning (to specialize on a sampled subset of those tasks) is proposed to instantiate the Baldwin effect. The evolved Baldwinian-PINNs demonstrate fast and physics-compliant prediction capabilities across a range of empirically challenging problem instances with more than an order of magnitude improvement in prediction accuracy at a fraction of the computation cost compared to state-of-the-art gradient-based meta-learning methods. For example, when solving the diffusion-reaction equation, a 70x improvement in accuracy was obtained while taking 700x less computational time. This paper thus marks a leap forward in the meta-learning of PINNs as generalizable physics solvers. Sample codes are available at \url{https://github.com/chiuph/Baldwinian-PINN}.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、科学機械学習の最前線にあり、物理的法則を認識し、それらを正確にシミュレートできるマシンインテリジェンスの作成を可能にする。
しかし、今日のPINNは単一の物理タスクのために訓練され、同様の物理領域のタスクであっても、新しいタスクごとに計算的に高価な再訓練を必要とすることが多い。
この制限に対処するため,本論文では,ボールドウィン進化の枠組みを通じて,PINNの一般化可能性を高めるための先駆的なアプローチを提案する。
環境を学習し、予測し、迅速に反応するように進化してきた先駆的な種の神経発達からインスピレーションを得て、我々は、物理学の効率的な学習に向けて強いバイアスをもたらす接続強度にあらかじめ結びついているPINNを想像する。
新しい2段階確率計画定式化法は、Baldwin効果をインスタンス化するために、(これらのタスクのサンプルサブセットを専門化するために)生涯学習と(物理タスクの分布の習熟度に基づく)進化選択圧を結合する。
進化したBaldwinian-PINNは、最先端の勾配に基づくメタ学習法と比較して、計算コストのごく一部で予測精度が大幅に向上した、経験的に困難なさまざまな問題インスタンスに対して、高速で物理に準拠した予測能力を実証している。
例えば、拡散反応方程式の解法では、700倍の計算時間で精度が70倍向上した。
そこで本研究では,一般化可能な物理解法として,PINNのメタラーニングの飛躍的な進歩を示す。
サンプルコードは \url{https://github.com/chiuph/Baldwinian-PINN} で公開されている。
関連論文リスト
- Advancing Physics Data Analysis through Machine Learning and Physics-Informed Neural Networks [0.0]
本研究は,物理データ解析のための機械学習(ML)アルゴリズムについて評価する。
これらの手法をシミュレーションシナリオの実験的生存性を識別する二項分類タスクに適用する。
XGBoostは、そのスピードと有効性のために評価された機械学習アルゴリズムの中で好まれる選択として登場した。
論文 参考訳(メタデータ) (2024-10-18T11:05:52Z) - Improved physics-informed neural network in mitigating gradient related failures [11.356695216531328]
物理インフォームドニューラルネットワーク(PINN)は、高度なデータ駆動技術で基本的な物理原理を統合する。
PINNは勾配流の剛性に悩まされ、予測能力が制限される。
本稿では,勾配関連障害を軽減するために改良されたPINNを提案する。
論文 参考訳(メタデータ) (2024-07-28T07:58:10Z) - Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたニューラルネットワークモデルとして研究されている。
本稿では,SNNがシナプス遅延と時間符号化とを併用すると,グラフ推論の実行(知識)に長けていることを明らかにする。
論文 参考訳(メタデータ) (2024-05-27T05:53:30Z) - Architectural Strategies for the optimization of Physics-Informed Neural
Networks [30.92757082348805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)における前方および逆問題に対処するための有望な道を提供する
その顕著な経験的成功にもかかわらず、PINNは様々なPDEで悪名高いトレーニング課題の評判を得た。
論文 参考訳(メタデータ) (2024-02-05T04:15:31Z) - Toward stochastic neural computing [11.955322183964201]
本稿では,ノイズ入力のストリームをスパイキングニューロンの集団によって変換し,処理するニューラルコンピューティングの理論を提案する。
本手法をIntelのLoihiニューロモルフィックハードウェアに適用する。
論文 参考訳(メタデータ) (2023-05-23T12:05:35Z) - Neuroevolution of Physics-Informed Neural Nets: Benchmark Problems and
Comparative Results [25.12291688711645]
物理インフォームドニューラルネットワーク(PINN)は、最近の進歩の最前線にある重要な技術の一つである。
PINNのユニークな損失の定式化は、勾配降下に寄与しない高い複雑さと頑丈さをもたらす。
優れたグローバル検索能力を持つ神経進化アルゴリズムは、PINNにとってより良い選択であるかもしれない。
論文 参考訳(メタデータ) (2022-12-15T05:54:16Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Parsimonious neural networks learn interpretable physical laws [77.34726150561087]
本稿では、ニューラルネットワークと進化的最適化を組み合わせたパシモニクスニューラルネットワーク(PNN)を提案し、精度とパシモニクスのバランスをとるモデルを求める。
アプローチのパワーと汎用性は、古典力学のモデルを開発し、基本特性から材料の融解温度を予測することによって実証される。
論文 参考訳(メタデータ) (2020-05-08T16:15:47Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。