論文の概要: Advancing Physics Data Analysis through Machine Learning and Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2410.14760v1
- Date: Fri, 18 Oct 2024 11:05:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:16:23.667355
- Title: Advancing Physics Data Analysis through Machine Learning and Physics-Informed Neural Networks
- Title(参考訳): 機械学習と物理情報ニューラルネットワークによる物理データ解析の促進
- Authors: Vasileios Vatellis,
- Abstract要約: 本研究は,物理データ解析のための機械学習(ML)アルゴリズムについて評価する。
これらの手法をシミュレーションシナリオの実験的生存性を識別する二項分類タスクに適用する。
XGBoostは、そのスピードと有効性のために評価された機械学習アルゴリズムの中で好まれる選択として登場した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In an era increasingly focused on green computing and explainable AI, revisiting traditional approaches in theoretical and phenomenological particle physics is paramount. This project evaluates various machine learning (ML) algorithms-including Nearest Neighbors, Decision Trees, Random Forest, AdaBoost, Naive Bayes, Quadratic Discriminant Analysis (QDA), and XGBoost-alongside standard neural networks and a novel Physics-Informed Neural Network (PINN) for physics data analysis. We apply these techniques to a binary classification task that distinguishes the experimental viability of simulated scenarios based on Higgs observables and essential parameters. Through this comprehensive analysis, we aim to showcase the capabilities and computational efficiency of each model in binary classification tasks, thereby contributing to the ongoing discourse on integrating ML and Deep Neural Networks (DNNs) into physics research. In this study, XGBoost emerged as the preferred choice among the evaluated machine learning algorithms for its speed and effectiveness, especially in the initial stages of computation with limited datasets. However, while standard Neural Networks and Physics-Informed Neural Networks (PINNs) demonstrated superior performance in terms of accuracy and adherence to physical laws, they require more computational time. These findings underscore the trade-offs between computational efficiency and model sophistication.
- Abstract(参考訳): グリーンコンピューティングと説明可能なAIに注目している時代では、理論と現象学の粒子物理学における伝統的なアプローチを再考することが最重要である。
本研究は, 近接木, 決定木, ランダムフォレスト, AdaBoost, Naive Bayes, Quadratic Discriminant Analysis (QDA), XGBoost-Alongside標準ニューラルネットワーク, 物理データ解析のための新しい物理情報ニューラルネットワーク(PINN)など, 機械学習(ML)アルゴリズムの評価を行う。
本稿では,ヒッグスオブザーバブルと本質的パラメータに基づくシミュレーションシナリオの有効性を識別する二項分類タスクに適用する。
この包括的分析を通じて、各モデルの2進分類タスクにおける能力と計算効率を実証し、MLとディープニューラルネットワーク(Deep Neural Networks:DNN)を物理研究に統合するための継続的な議論に寄与することを目的とする。
本研究では,その速度と有効性,特に限られたデータセットを用いた計算の初期段階において,評価された機械学習アルゴリズムの中で,XGBoostが好まれる選択として現れた。
しかし、標準的なニューラルネットワークと物理インフォームドニューラルネットワーク(PINN)は、物理法則の正確性や遵守性において優れた性能を示したが、より計算時間を要する。
これらの結果は、計算効率とモデル洗練のトレードオフを浮き彫りにした。
関連論文リスト
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - A Comparison Between Invariant and Equivariant Classical and Quantum Graph Neural Networks [3.350407101925898]
グラフニューラルネットワーク(GNN)のような深層幾何学的手法は、高エネルギー物理学における様々なデータ解析タスクに活用されている。
典型的なタスクはジェットタグであり、ジェットは異なる特徴とそれらの構成粒子間のエッジ接続を持つ点雲と見なされる。
本稿では,古典的グラフニューラルネットワーク(GNN)と,その量子回路との公平かつ包括的な比較を行う。
論文 参考訳(メタデータ) (2023-11-30T16:19:13Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
Scientific Computing [0.0]
コンピュータパワーの最近の進歩は、機械学習とディープラーニングを使って科学計算を進歩させることを可能にした。
固有のアーキテクチャのため、従来のニューラルネットワークは、データがスパースである場合には、うまくトレーニングされ、スコープ化できない。
ニューラルネットワークは、物理的駆動あるいは知識に基づく制約を消化するための強力な基盤を提供する。
論文 参考訳(メタデータ) (2022-11-14T15:44:07Z) - Physics-informed ConvNet: Learning Physical Field from a Shallow Neural
Network [0.180476943513092]
マルチ物理システムのモデル化と予測は、避けられないデータ不足とノイズのために依然として課題である。
物理インフォームド・コンボリューション・ネットワーク(PICN)と呼ばれる新しいフレームワークは、CNNの観点から推奨されている。
PICNは物理インフォームド機械学習において、代替のニューラルネットワークソルバとなる可能性がある。
論文 参考訳(メタデータ) (2022-01-26T14:35:58Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Understanding and mitigating gradient pathologies in physics-informed
neural networks [2.1485350418225244]
この研究は、物理システムの結果を予測し、ノイズの多いデータから隠れた物理を発見するための物理情報ニューラルネットワークの有効性に焦点を当てる。
本稿では,モデル学習中の勾配統計を利用して,複合損失関数の異なる項間の相互作用のバランスをとる学習速度アニーリングアルゴリズムを提案する。
また、そのような勾配に耐性のある新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-01-13T21:23:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。