論文の概要: Identity-Obscured Neural Radiance Fields: Privacy-Preserving 3D Facial
Reconstruction
- arxiv url: http://arxiv.org/abs/2312.04106v1
- Date: Thu, 7 Dec 2023 07:41:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 15:38:43.175668
- Title: Identity-Obscured Neural Radiance Fields: Privacy-Preserving 3D Facial
Reconstruction
- Title(参考訳): プライバシー保護型3次元顔画像再構成
- Authors: Jiayi Kong, Baixin Xu, Xurui Song, Chen Qian, Jun Luo, Ying He
- Abstract要約: 本稿では,プライバシ保護画像を利用した3次元頭部形状再構成手法を提案する。
本手法は, 感度の高い顔データを含む画像からのRGB情報に依存しないため, 従来の顔再構成技術とは別物である。
- 参考スコア(独自算出の注目度): 14.139797769866135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance fields (NeRF) typically require a complete set of images
taken from multiple camera perspectives to accurately reconstruct geometric
details. However, this approach raise significant privacy concerns in the
context of facial reconstruction. The critical need for privacy protection
often leads invidividuals to be reluctant in sharing their facial images, due
to fears of potential misuse or security risks. Addressing these concerns, we
propose a method that leverages privacy-preserving images for reconstructing 3D
head geometry within the NeRF framework. Our method stands apart from
traditional facial reconstruction techniques as it does not depend on RGB
information from images containing sensitive facial data. Instead, it
effectively generates plausible facial geometry using a series of
identity-obscured inputs, thereby protecting facial privacy.
- Abstract(参考訳): neural radiance fields (nerf) は通常、幾何学的詳細を正確に再構成するために、複数のカメラ視点から撮影された画像の完全なセットを必要とする。
しかし、このアプローチは顔面再建の文脈において重要なプライバシー上の懸念を提起する。
プライバシー保護の重要要件は、誤用やセキュリティリスクの恐れから、顔画像の共有に消極的になることが多い。
これらの問題に対処するため,NeRFフレームワーク内の3次元頭部形状の再構成にプライバシー保護画像を活用する手法を提案する。
本手法は,感度の高い顔データを含む画像からのrgb情報に依存しないため,従来の顔再建手法とは別物である。
代わりに、一連のアイデンティティオブサークされた入力を使用して、有効な顔形状を生成し、それによって顔のプライバシーを保護する。
関連論文リスト
- 3D Face Reconstruction With Geometry Details From a Single Color Image Under Occluded Scenes [4.542616945567623]
3D顔再構成技術は、自然かつ現実的に顔ステレオモデルを作成することを目的としている。
従来のディープ・フェイス・リコンストラクション・アプローチは、一般的に説得力のあるテクスチャを生成するために設計されている。
バンプマッピングを導入することで、3Dの顔を粗くするために中程度の細部を追加しました。
論文 参考訳(メタデータ) (2024-12-25T15:16:02Z) - Generative Face Parsing Map Guided 3D Face Reconstruction Under Occluded Scenes [4.542616945567623]
ランドマークで案内された完全な顔解析マップ生成法を提案する。
優れた隠蔽顔復元法は、出力の真偽を確実にする。
論文 参考訳(メタデータ) (2024-12-25T14:49:41Z) - G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
可逆顔匿名化(Reversible face anonymization)は、顔画像の繊細なアイデンティティ情報を、合成された代替品に置き換えようとしている。
本稿では,Gtextsuperscript2Faceを提案する。
提案手法は,高データの有効性を保ちながら,顔の匿名化と回復において既存の最先端技術よりも優れる。
論文 参考訳(メタデータ) (2024-08-18T12:36:47Z) - Facial Geometric Detail Recovery via Implicit Representation [147.07961322377685]
そこで本研究では,一眼の顔画像のみを用いて,テクスチャガイドを用いた幾何的細部復元手法を提案する。
提案手法は,高品質なテクスチャ補完と暗黙の面の強力な表現性を組み合わせたものである。
本手法は, 顔の正確な細部を復元するだけでなく, 正常部, アルベド部, シェーディング部を自己監督的に分解する。
論文 参考訳(メタデータ) (2022-03-18T01:42:59Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
そこで本研究では,レンダリング可能な3次元顔形状とBRDFの再構成を,単一の"in-the-wild"画像から実現した最初の手法を提案する。
本手法は,1枚の低解像度画像から,高解像度の3次元顔の再構成を行う。
論文 参考訳(メタデータ) (2021-12-11T11:36:30Z) - Identity-Preserving Pose-Robust Face Hallucination Through Face Subspace
Prior [14.353574903736343]
新たな顔超解像法が導入され、幻覚した顔は、利用可能な訓練面に散らばった部分空間に置かれざるを得なくなる。
3次元辞書アライメント方式も提示され、アルゴリズムは制御不能な条件下での低解像度の顔の処理が可能となる。
いくつかのよく知られた顔データセットに対して行われた広範囲な実験において、提案アルゴリズムは、詳細で地上に近い真理結果を生成することにより、顕著な性能を示す。
論文 参考訳(メタデータ) (2021-11-20T17:08:38Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDERは、教師なしの方法で単一の画像から詳細な顔形状を復元する新しい光度最適化手法である。
以前の作業とは対照的に、SIDERはデータセットの事前に依存せず、複数のビュー、照明変更、地上の真実の3D形状から追加の監視を必要としない。
論文 参考訳(メタデータ) (2021-08-11T22:34:53Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
我々は、GAN(Generative Adversarial Networks)とDCNN(Deep Convolutional Neural Networks)の力を利用して、単一画像から顔のテクスチャと形状を再構築する。
3次元顔再構成を保存したフォトリアリスティックでアイデンティティに優れた結果を示し, 初めて, 高精度な顔テクスチャ再構成を実現する。
論文 参考訳(メタデータ) (2021-05-16T16:35:44Z) - Face Super-Resolution Guided by 3D Facial Priors [92.23902886737832]
シャープな顔構造を把握した3次元顔先行情報を明示的に組み込んだ新しい顔超解像法を提案する。
我々の研究は、顔属性のパラメトリック記述の融合に基づく3次元形態的知識を初めて探求したものである。
提案した3D先行画像は、最先端技術よりも優れた顔超解像結果が得られる。
論文 参考訳(メタデータ) (2020-07-18T15:26:07Z) - Do We Need Depth in State-Of-The-Art Face Authentication? [8.755493949976492]
本研究では,顔表面や深度マップを明示的に計算することなく,ステレオカメラシステムから顔を認識する新しい手法を提案する。
原顔ステレオ画像は、顔が抽出された画像の位置とともに、提案したCNNが認識タスクを改善することができる。
提案手法は,大規模ベンチマークにおいて,単一画像と明示的深度に基づく手法の両方に優れることを示した。
論文 参考訳(メタデータ) (2020-03-24T14:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。