論文の概要: Do Not DeepFake Me: Privacy-Preserving Neural 3D Head Reconstruction Without Sensitive Images
- arxiv url: http://arxiv.org/abs/2312.04106v2
- Date: Sat, 14 Dec 2024 08:09:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:50:41.707362
- Title: Do Not DeepFake Me: Privacy-Preserving Neural 3D Head Reconstruction Without Sensitive Images
- Title(参考訳): Don Not DeepFake Me: 感度画像のないプライバシー保護型ニューラル3Dヘッド
- Authors: Jiayi Kong, Xurui Song, Shuo Huai, Baixin Xu, Jun Luo, Ying He,
- Abstract要約: 本稿では,詳細な幾何学的精度を保ちながら,繊細な顔情報への露出を避けることを目的とした,新しい2段階の顔再構成手法を提案する。
提案手法はまず, 初期幾何に非感度な後頭部画像を用い, 処理されたプライバシー除去勾配画像を用いてその形状を改良する。
- 参考スコア(独自算出の注目度): 5.462031439048112
- License:
- Abstract: While 3D head reconstruction is widely used for modeling, existing neural reconstruction approaches rely on high-resolution multi-view images, posing notable privacy issues. Individuals are particularly sensitive to facial features, and facial image leakage can lead to many malicious activities, such as unauthorized tracking and deepfake. In contrast, geometric data is less susceptible to misuse due to its complex processing requirements, and absence of facial texture features. In this paper, we propose a novel two-stage 3D facial reconstruction method aimed at avoiding exposure to sensitive facial information while preserving detailed geometric accuracy. Our approach first uses non-sensitive rear-head images for initial geometry and then refines this geometry using processed privacy-removed gradient images. Extensive experiments show that the resulting geometry is comparable to methods using full images, while the process is resistant to DeepFake applications and facial recognition (FR) systems, thereby proving its effectiveness in privacy protection.
- Abstract(参考訳): 3Dヘッド再構成はモデリングに広く利用されているが、既存のニューラル再構成アプローチは高解像度のマルチビュー画像に依存しており、プライバシーの問題が顕著である。
個人は特に顔の特徴に敏感であり、顔画像の漏洩は、不正な追跡やディープフェイクなど多くの悪意ある活動を引き起こす可能性がある。
対照的に、幾何学的データは複雑な処理要件や顔のテクスチャが欠如しているため、誤用の影響を受けにくい。
本稿では,細かな幾何学的精度を保ちながら,繊細な顔情報への露出を避けることを目的とした,新しい2段階の顔再構成手法を提案する。
提案手法はまず, 初期幾何に非感度な後頭部画像を用い, 処理されたプライバシー除去勾配画像を用いてその形状を改良する。
大規模な実験では、結果として得られる幾何はフルイメージを使用する手法に匹敵するが、このプロセスはDeepFakeアプリケーションや顔認識(FR)システムに耐性があり、それによってプライバシー保護の有効性が証明される。
関連論文リスト
- G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
可逆顔匿名化(Reversible face anonymization)は、顔画像の繊細なアイデンティティ情報を、合成された代替品に置き換えようとしている。
本稿では,Gtextsuperscript2Faceを提案する。
提案手法は,高データの有効性を保ちながら,顔の匿名化と回復において既存の最先端技術よりも優れる。
論文 参考訳(メタデータ) (2024-08-18T12:36:47Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - Privacy-Preserving Face Recognition Using Trainable Feature Subtraction [40.47645421424354]
顔認識はプライバシーの懸念を増している。
本稿では,視覚障害と回復障害に対する顔画像保護について検討する。
我々は,この手法を新たなプライバシ保護顔認識手法であるMinusFaceに精錬する。
論文 参考訳(メタデータ) (2024-03-19T05:27:52Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via
Adversarial Latent Search [10.16904417057085]
ディープラーニングベースの顔認識システムは、デジタル世界のユーザを無許可で追跡することができる。
既存のプライバシーを強化する方法は、ユーザー体験を損なうことなく、顔のプライバシーを保護することができる自然主義的なイメージを生成するのに失敗する。
本稿では,事前学習された生成モデルの低次元多様体における逆潜時符号の発見に依存する,顔のプライバシー保護のための新しい2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-16T17:58:15Z) - Privacy-preserving Adversarial Facial Features [31.885215405010687]
本稿では, 顔のプライバシ保護に配慮した顔のプライバシー保護手法を提案する。
我々は,AdvFaceが再建攻撃に対する防御において,最先端のプライバシー保護手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-08T08:52:08Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - FaceMAE: Privacy-Preserving Face Recognition via Masked Autoencoders [81.21440457805932]
顔のプライバシと認識性能を同時に考慮する新しいフレームワークFaceMAEを提案する。
ランダムにマスクされた顔画像は、FaceMAEの再構築モジュールのトレーニングに使用される。
また、いくつかの公開顔データセット上で十分なプライバシー保護顔認証を行う。
論文 参考訳(メタデータ) (2022-05-23T07:19:42Z) - Assessing Privacy Risks from Feature Vector Reconstruction Attacks [24.262351521060676]
我々は、再構成された顔画像の脅威を有意義に捉える指標を開発する。
再構成された顔画像は、商業的な顔認識システムと人間の両方による再識別を可能にすることを示す。
その結果,特徴ベクトルはパーソナライズ可能な情報として認識されるべきであることが確認された。
論文 参考訳(メタデータ) (2022-02-11T16:52:02Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。