論文の概要: Spectral methods for Neural Integral Equations
- arxiv url: http://arxiv.org/abs/2312.05654v2
- Date: Wed, 27 Dec 2023 04:50:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 21:37:19.609152
- Title: Spectral methods for Neural Integral Equations
- Title(参考訳): 神経積分方程式のスペクトル法
- Authors: Emanuele Zappala
- Abstract要約: 本稿では,スペクトル法に基づくニューラル積分方程式の枠組みを提案する。
モデルの近似能力に関する様々な理論的保証を示す。
得られたモデルの有効性を示す数値実験を行う。
- 参考スコア(独自算出の注目度): 0.6993026261767287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural integral equations are deep learning models based on the theory of
integral equations, where the model consists of an integral operator and the
corresponding equation (of the second kind) which is learned through an
optimization procedure. This approach allows to leverage the nonlocal
properties of integral operators in machine learning, but it is computationally
expensive. In this article, we introduce a framework for neural integral
equations based on spectral methods that allows us to learn an operator in the
spectral domain, resulting in a cheaper computational cost, as well as in high
interpolation accuracy. We study the properties of our methods and show various
theoretical guarantees regarding the approximation capabilities of the model,
and convergence to solutions of the numerical methods. We provide numerical
experiments to demonstrate the practical effectiveness of the resulting model.
- Abstract(参考訳): 神経積分方程式 (neural integral equation) は、積分方程式の理論に基づく深層学習モデルであり、このモデルが積分作用素と、最適化手順によって学習される対応する(第2種類の)方程式からなる。
このアプローチでは、機械学習における積分演算子の非局所的性質を活用できるが、計算コストは高い。
本稿では,スペクトル領域の演算子を学習し,計算コストの低減と補間精度の向上を実現するための,スペクトル法に基づくニューラル積分方程式の枠組みを提案する。
本手法の特性について検討し,モデルの近似能力,および数値解への収束に関して,様々な理論的保証を示す。
得られたモデルの有効性を示す数値実験を行う。
関連論文リスト
- Neural Control Variates with Automatic Integration [49.91408797261987]
本稿では,任意のニューラルネットワークアーキテクチャから学習可能なパラメトリック制御関数を構築するための新しい手法を提案する。
我々はこのネットワークを用いて積分器の反微分を近似する。
我々はウォーク・オン・スフィア・アルゴリズムを用いて偏微分方程式を解くために本手法を適用した。
論文 参考訳(メタデータ) (2024-09-23T06:04:28Z) - Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics [8.528817025440746]
本稿では、パラメトリック微分方程式を解くための新しいガウス過程(GP)に基づくニューラル演算子を提案する。
ニューラル演算子を用いて学習した潜在空間でGPカーネルを定式化するニューラル演算子埋め込みカーネル'を提案する。
本研究は, 不確実性評価におけるロバスト性を維持しつつ, 複雑なPDEを解く上で, この枠組みの有効性を強調した。
論文 参考訳(メタデータ) (2024-09-17T08:12:38Z) - PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems [0.0]
本稿では,物理インフォームド深層学習フレームワークにおける積分演算子近似のための効率的なテンソルベクトル積法を提案する。
我々は、この方法がフレドホルムとボルテラ積分作用素の両方に適用可能であることを実証する。
また,カプトー微分を効率的に計算する高速行列ベクトル積アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T13:43:58Z) - Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
ニューラル作用素におけるベイズの不確かさを近似する新しい枠組みを導入する。
我々の手法は関数型プログラミングからカリー化の概念の確率論的類似体と解釈できる。
我々は、異なるタイプの偏微分方程式への応用を通して、我々のアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-06-07T16:43:54Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Neural Integral Equations [3.087238735145305]
IEソルバを用いたデータから未知の積分演算子を学習する手法を提案する。
また,注意神経積分方程式(ANIE, Attentional Neural Integral Equations)も提示する。
論文 参考訳(メタデータ) (2022-09-30T02:32:17Z) - Personalized Algorithm Generation: A Case Study in Meta-Learning ODE
Integrators [6.457555233038933]
科学計算における数値アルゴリズムのメタラーニングに関する研究
初期値問題の解法を自動的に学習する機械学習手法を開発した。
論文 参考訳(メタデータ) (2021-05-04T05:42:33Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
本稿では,ニューラルネットワークモデルにおける勾配の効率的な近似法を提案する。
我々は、分類、密度推定、推論近似タスクにおいて、ニューラルODEをトレーニングするリバースダイナミック手法と比較する。
論文 参考訳(メタデータ) (2020-03-11T13:15:57Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。