論文の概要: Neural network-enhanced integrators for simulating ordinary differential equations
- arxiv url: http://arxiv.org/abs/2504.05493v1
- Date: Mon, 07 Apr 2025 20:38:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:28:07.688652
- Title: Neural network-enhanced integrators for simulating ordinary differential equations
- Title(参考訳): 一般微分方程式をシミュレートするニューラルネットワーク強化積分器
- Authors: Amine Othmane, Kathrin Flaßkamp,
- Abstract要約: NNは積分誤差を学習するために訓練され、数値スキームの加算補正用語として使用される。
提案手法の有効性は,風力タービンの現実モデルを用いた広範囲な数値実験により実証された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Numerous applications necessitate the computation of numerical solutions to differential equations across a wide range of initial conditions and system parameters, which feeds the demand for efficient yet accurate numerical integration methods.This study proposes a neural network (NN) enhancement of classical numerical integrators. NNs are trained to learn integration errors, which are then used as additive correction terms in numerical schemes. The performance of these enhanced integrators is compared with well-established methods through numerical studies, with a particular emphasis on computational efficiency. Analytical properties are examined in terms of local errors and backward error analysis. Embedded Runge-Kutta schemes are then employed to develop enhanced integrators that mitigate generalization risk, ensuring that the neural network's evaluation in previously unseen regions of the state space does not destabilize the integrator. It is guaranteed that the enhanced integrators perform at least as well as the desired classical Runge-Kutta schemes. The effectiveness of the proposed approaches is demonstrated through extensive numerical studies using a realistic model of a wind turbine, with parameters derived from the established simulation framework OpenFast.
- Abstract(参考訳): 本研究は,従来の数値積分器のニューラルネットワーク(NN)強化を提案する。
NNは積分誤差を学習するために訓練され、数値スキームの加算補正用語として使用される。
これらの強化積分器の性能は、数値的な研究を通じて確立された手法と比較され、特に計算効率に重点を置いている。
局所誤差および後方誤差解析の観点から解析特性について検討した。
埋め込みルンゲ・クッタスキームは、一般化リスクを緩和する拡張積分器を開発するために使用され、状態空間の未確認領域におけるニューラルネットワークの評価が積分器を不安定にしないようにする。
拡張積分器は、少なくとも古典的なルンゲ・クッタスキームと同様に作用することが保証されている。
提案手法の有効性は,風力タービンの現実モデルを用いた広範囲な数値実験により実証され,そのパラメータは確立されたシミュレーションフレームワークOpenFastから導かれる。
関連論文リスト
- Advanced Physics-Informed Neural Network with Residuals for Solving Complex Integral Equations [0.13499500088995461]
RISNは、幅広い積分方程式と積分微分方程式を解くために設計された、新しいニューラルネットワークアーキテクチャである。
RISN は PINN を一貫して上回り,様々な種類の方程式に対して平均絶対誤差 (MAE) を著しく低下させることを示す。
その結果、RISNの難解な積分および積分微分問題の解法における堅牢性と効率性を強調した。
論文 参考訳(メタデータ) (2025-01-22T19:47:03Z) - Regularized dynamical parametric approximation of stiff evolution problems [0.0]
非線形パラメトリゼーションのクラスを$ u(t) = Phi(theta(t)) $ で調べ、進化パラメータ $theta(t)$ を計算する。
主な焦点は、固い進化問題と不規則なパラメトリゼーションの組み合わせによって生じる課題に対処することである。
論文 参考訳(メタデータ) (2025-01-21T13:29:36Z) - Neural Control Variates with Automatic Integration [49.91408797261987]
本稿では,任意のニューラルネットワークアーキテクチャから学習可能なパラメトリック制御関数を構築するための新しい手法を提案する。
我々はこのネットワークを用いて積分器の反微分を近似する。
我々はウォーク・オン・スフィア・アルゴリズムを用いて偏微分方程式を解くために本手法を適用した。
論文 参考訳(メタデータ) (2024-09-23T06:04:28Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
圧縮可能なNavier-Stokes方程式を解くためのエンドツーエンドの微分可能なフレームワークを提案する。
この統合アプローチは、微分可能不連続なガレルキン解法とニューラルネットワークのソース項を組み合わせる。
提案するフレームワークの性能を2つの例で示す。
論文 参考訳(メタデータ) (2023-10-29T04:26:23Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast
Training and Evaluation of Neural ODEs [22.976119802895017]
ニューラル常微分方程式(NODE)の学習のためのデータ駆動型アプローチを提案する。
提案手法は,低階テイラー展開のみを用いながら,適応的なステップサイズスキームと同じ精度を実現する。
一連の数値実験により、TL-NODEは最先端のアプローチよりも桁違いに高速に訓練できることが示されている。
論文 参考訳(メタデータ) (2022-01-14T23:56:19Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。