論文の概要: Neural Control Variates with Automatic Integration
- arxiv url: http://arxiv.org/abs/2409.15394v1
- Date: Mon, 23 Sep 2024 06:04:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 13:10:19.132226
- Title: Neural Control Variates with Automatic Integration
- Title(参考訳): 自動統合によるニューラル制御
- Authors: Zilu Li, Guandao Yang, Qingqing Zhao, Xi Deng, Leonidas Guibas, Bharath Hariharan, Gordon Wetzstein,
- Abstract要約: 本稿では,任意のニューラルネットワークアーキテクチャから学習可能なパラメトリック制御関数を構築するための新しい手法を提案する。
我々はこのネットワークを用いて積分器の反微分を近似する。
我々はウォーク・オン・スフィア・アルゴリズムを用いて偏微分方程式を解くために本手法を適用した。
- 参考スコア(独自算出の注目度): 49.91408797261987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a method to leverage arbitrary neural network architecture for control variates. Control variates are crucial in reducing the variance of Monte Carlo integration, but they hinge on finding a function that both correlates with the integrand and has a known analytical integral. Traditional approaches rely on heuristics to choose this function, which might not be expressive enough to correlate well with the integrand. Recent research alleviates this issue by modeling the integrands with a learnable parametric model, such as a neural network. However, the challenge remains in creating an expressive parametric model with a known analytical integral. This paper proposes a novel approach to construct learnable parametric control variates functions from arbitrary neural network architectures. Instead of using a network to approximate the integrand directly, we employ the network to approximate the anti-derivative of the integrand. This allows us to use automatic differentiation to create a function whose integration can be constructed by the antiderivative network. We apply our method to solve partial differential equations using the Walk-on-sphere algorithm. Our results indicate that this approach is unbiased and uses various network architectures to achieve lower variance than other control variate methods.
- Abstract(参考訳): 本稿では,任意のニューラルネットワークアーキテクチャを制御変数に適用する手法を提案する。
制御変数はモンテカルロ積分の分散を減らすために重要であるが、それらは積分と相関し、既知の解析積分を持つ関数を見つけることにヒンジする。
伝統的なアプローチは、この関数を選択するためにヒューリスティックスに依存しており、積分と相関するほど表現力がないかもしれない。
近年の研究では、ニューラルネットワークのような学習可能なパラメトリックモデルでインテグレードをモデル化することで、この問題を緩和している。
しかし、この課題は、既知の解析積分を持つ表現的パラメトリックモデルを作成することである。
本稿では,任意のニューラルネットワークアーキテクチャから学習可能なパラメトリック制御関数を構築するための新しい手法を提案する。
積分器を直接近似するためにネットワークを使う代わりに、積分器の反微分を近似するためにネットワークを用いる。
これにより、自動微分を使用して、抗微分ネットワークによって統合を構築できる関数を作成することができる。
我々はウォーク・オン・スフィア・アルゴリズムを用いて偏微分方程式を解くために本手法を適用した。
提案手法は非バイアスであり,様々なネットワークアーキテクチャを用いて,他の制御変数法よりも分散度が低いことを示す。
関連論文リスト
- Fixed Integral Neural Networks [2.2118683064997273]
学習した関数の積分を$f$で表す方法を提案する。
これにより、ニューラルネットワークの正確な積分を計算し、制約されたニューラルネットワークをパラメータ化することができる。
また、多くのアプリケーションに必要な条件である正の$f$を制約する手法も導入する。
論文 参考訳(メタデータ) (2023-07-26T18:16:43Z) - Integral Transforms in a Physics-Informed (Quantum) Neural Network
setting: Applications & Use-Cases [1.7403133838762446]
工学や科学における多くの計算問題において、関数やモデルの微分は不可欠であるが、積分も必要である。
本研究では,物理インフォームドニューラルネットワークのパラダイムを,自動統合で拡張することを提案する。
論文 参考訳(メタデータ) (2022-06-28T17:51:32Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
従来のNystr"om式に基づく非パラメトリックなソリューションはスケーラビリティの問題に悩まされる。
最近の研究はパラメトリックなアプローチ、すなわち固有関数を近似するためにニューラルネットワークを訓練している。
教師なしおよび教師なしの学習問題の空間に一般化する新たな目的関数を用いて,これらの問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-04-30T05:31:07Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Polynomial-Spline Neural Networks with Exact Integrals [0.0]
我々は,実験モデルの混合と自由結び目B1-スプライン基底関数を組み合わせた新しいニューラルネットワークアーキテクチャを開発した。
我々のアーキテクチャは近似理論から期待される収束率での回帰問題に対する$h$-および$p$-の洗練を示す。
ネットワークアーキテクチャの一貫性と正確な統合性を示す様々な回帰問題と変分問題において、我々のネットワークの成功を実証する。
論文 参考訳(メタデータ) (2021-10-26T22:12:37Z) - AutoInt: Automatic Integration for Fast Neural Volume Rendering [51.46232518888791]
暗黙的ニューラル表現ネットワークを用いて、積分に対する効率的でクローズドな解を学習するための新しいフレームワークを提案する。
我々は,高速なニューラルボリュームレンダリングを実現するために,フォトリアリスティックな要件を10倍以上に改善したことを示す。
論文 参考訳(メタデータ) (2020-12-03T05:46:10Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。