論文の概要: Exploring Novel Object Recognition and Spontaneous Location Recognition
Machine Learning Analysis Techniques in Alzheimer's Mice
- arxiv url: http://arxiv.org/abs/2312.06914v2
- Date: Tue, 19 Dec 2023 22:16:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 18:52:38.304340
- Title: Exploring Novel Object Recognition and Spontaneous Location Recognition
Machine Learning Analysis Techniques in Alzheimer's Mice
- Title(参考訳): アルツハイマー病マウスにおける新しい物体認識と自発位置認識機械学習解析手法の探索
- Authors: Soham Bafana
- Abstract要約: 本研究は,最先端の計算パイプラインの開発,応用,評価に重点を置いている。
このパイプラインは、初期データ収集のためのAny-Maze、詳細なポーズ推定のためのDeepLabCut、ニュアンスな行動分類のための畳み込みニューラルネットワーク(CNN)の3つの高度な計算モデルを統合する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding object recognition patterns in mice is crucial for advancing
behavioral neuroscience and has significant implications for human health,
particularly in the realm of Alzheimer's research. This study is centered on
the development, application, and evaluation of a state-of-the-art
computational pipeline designed to analyze such behaviors, specifically
focusing on Novel Object Recognition (NOR) and Spontaneous Location Recognition
(SLR) tasks. The pipeline integrates three advanced computational models:
Any-Maze for initial data collection, DeepLabCut for detailed pose estimation,
and Convolutional Neural Networks (CNNs) for nuanced behavioral classification.
Employed across four distinct mouse groups, this pipeline demonstrated high
levels of accuracy and robustness. Despite certain challenges like video
quality limitations and the need for manual calculations, the results affirm
the pipeline's efficacy and potential for scalability. The study serves as a
proof of concept for a multidimensional computational approach to behavioral
neuroscience, emphasizing the pipeline's versatility and readiness for future,
more complex analyses.
- Abstract(参考訳): マウスにおける物体認識パターンの理解は行動神経科学の進歩に不可欠であり、特にアルツハイマー研究の領域において人間の健康に重大な影響を及ぼす。
本研究は,新しい物体認識(nor)と自発的位置認識(slr)タスクに着目し,このような振る舞いを分析するための最先端計算パイプラインの開発,応用,評価に重点を置いている。
このパイプラインは、初期データ収集のためのAny-Maze、詳細なポーズ推定のためのDeepLabCut、ニュアンスな行動分類のための畳み込みニューラルネットワーク(CNN)の3つの高度な計算モデルを統合する。
4つの異なるマウス群で採用され、高い精度と堅牢性を示した。
ビデオ品質の制限や手動計算の必要性といったある種の課題にもかかわらず、結果はパイプラインの有効性とスケーラビリティの可能性を確認している。
この研究は、行動神経科学に対する多次元計算アプローチの概念実証となり、将来、より複雑な分析のためのパイプラインの汎用性と準備を強調する。
関連論文リスト
- Machine Learning on Dynamic Functional Connectivity: Promise, Pitfalls, and Interpretations [7.013079422694949]
機能神経画像の深部モデル設計のための実証的ガイドラインの確立を目指す。
fMRIを用いた認知的タスク認識と疾患診断におけるSOTA(State-of-the-arts)のパフォーマンスはどのようなものか?
以上の課題に対処するため,様々な場面で総合的な評価と統計的分析を行った。
論文 参考訳(メタデータ) (2024-09-17T17:24:17Z) - Growing Deep Neural Network Considering with Similarity between Neurons [4.32776344138537]
我々は、訓練段階におけるコンパクトモデルにおいて、ニューロン数を漸進的に増加させる新しいアプローチを探求する。
本稿では,ニューロン類似性分布に基づく制約を導入することにより,特徴抽出バイアスと神経冗長性を低減する手法を提案する。
CIFAR-10とCIFAR-100データセットの結果、精度が向上した。
論文 参考訳(メタデータ) (2024-08-23T11:16:37Z) - Learning low-dimensional dynamics from whole-brain data improves task
capture [2.82277518679026]
逐次変分オートエンコーダ(SVAE)を用いたニューラルダイナミクスの低次元近似学習手法を提案する。
本手法は,従来の手法よりも精度の高い認知過程を予測できるスムーズなダイナミクスを見出す。
我々は、モータ、ワーキングメモリ、リレーショナル処理タスクを含む様々なタスクfMRIデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-05-18T18:43:13Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
我々は、-CycleGANと呼ばれる深層生成モデルを用いて、前学習と後学習の神経活動の間の未知のマッピングを学習する。
我々は,カルシウム蛍光信号を前処理し,訓練し,評価するためのエンドツーエンドパイプラインを開発し,その結果の深層学習モデルを解釈する手法を開発した。
論文 参考訳(メタデータ) (2021-11-25T13:24:19Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Deep Cross-Subject Mapping of Neural Activity [33.25686697879346]
本研究では、ある被験者の神経活動信号に基づいて訓練されたニューラルデコーダを用いて、異なる被験者の運動意図を強固に復号できることを示す。
本稿では,クロスオブジェクト脳-コンピュータ開発に向けた重要なステップとして,本研究で報告した知見について述べる。
論文 参考訳(メタデータ) (2020-07-13T14:35:02Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。