論文の概要: Permutation-Invariant Graph Partitioning:How Graph Neural Networks Capture Structural Interactions?
- arxiv url: http://arxiv.org/abs/2312.08671v2
- Date: Sun, 02 Mar 2025 13:13:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-04 16:11:44.299295
- Title: Permutation-Invariant Graph Partitioning:How Graph Neural Networks Capture Structural Interactions?
- Title(参考訳): 置換不変グラフ分割:グラフニューラルネットワークはどのように構造的相互作用をキャプチャするか?
- Authors: Asela Hevapathige, Qing Wang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ関連学習タスクの基盤となるための道を開いた。
しかし、グラフ内の構造的相互作用を捕捉するGNNの能力は、まだ解明されていない。
構造的相互作用の学習において,GNNの表現力を効率的に向上する新しいアーキテクチャであるグラフ分割ニューラルネットワーク(GPNN)を提案する。
- 参考スコア(独自算出の注目度): 2.7398542529968477
- License:
- Abstract: Graph Neural Networks (GNNs) have paved the way for being a cornerstone in graph-related learning tasks. Yet, the ability of GNNs to capture structural interactions within graphs remains under-explored. In this work, we address this gap by drawing on the insight that permutation invariant graph partitioning enables a powerful way of exploring structural interactions. We establish theoretical connections between permutation invariant graph partitioning and graph isomorphism, and then propose Graph Partitioning Neural Networks (GPNNs), a novel architecture that efficiently enhances the expressive power of GNNs in learning structural interactions. We analyze how partitioning schemes and structural interactions contribute to GNN expressivity and their trade-offs with complexity. Empirically, we demonstrate that GPNNs outperform existing GNN models in capturing structural interactions across diverse graph benchmark tasks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ関連学習タスクの基盤となるための道を開いた。
しかし、グラフ内の構造的相互作用を捕捉するGNNの能力は、まだ解明されていない。
本研究では、置換不変グラフ分割が構造的相互作用を探索する強力な方法をもたらすという知見に基づいて、このギャップに対処する。
置換不変グラフ分割とグラフ同型の間の理論的関係を確立し,構造的相互作用の学習において,GNNの表現力を効率的に向上する新しいアーキテクチャであるグラフ分割ニューラルネットワーク(GPNN)を提案する。
分割スキームと構造的相互作用がGNNの表現性と複雑性とのトレードオフにどのように寄与するかを分析する。
GPNNは,様々なグラフベンチマークタスク間の構造的相互作用を捉える上で,既存のGNNモデルよりも優れていることを示す。
関連論文リスト
- GNNAnatomy: Systematic Generation and Evaluation of Multi-Level Explanations for Graph Neural Networks [20.05098366613674]
本稿では,グラフ分類タスクの多段階説明の生成と評価を目的とした視覚解析システムであるGNNAnatomyを紹介する。
GNNAnatomyは、グラフレット、原始グラフサブ構造を用いて、GNN予測とグラフレット周波数の相関を分析することにより、グラフクラスで最も重要なサブ構造を識別する。
社会学・生物学領域からの合成および実世界のグラフデータセットのケーススタディを通して,GNN解剖学の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-06T23:09:54Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
グラフニューラルネットワーク(GNN)は、グラフやネットワークのような非ユークリッドデータ上での機械学習の分野に革命をもたらした。
本稿では,ノード表現をインジェクティブに更新する結合型グラフ畳み込み機構を提案する。
また,WL-SortPoolと呼ばれるグラフプーリングモジュールを設計し,重要なサブグラフパターンをディープラーニングで学習する。
論文 参考訳(メタデータ) (2024-04-21T13:11:59Z) - On the Expressive Power of Graph Neural Networks [0.0]
グラフニューラルネットワーク(GNN)は、社会科学、化学、医学といった分野における様々なタスクを解くことができる。
ディープラーニングをグラフ構造化データに拡張することにより、GNNは、社会科学、化学、医学といった分野におけるさまざまなタスクを解決できる。
論文 参考訳(メタデータ) (2024-01-03T08:54:56Z) - A Topological characterisation of Weisfeiler-Leman equivalence classes [0.0]
グラフニューラルネットワーク(GNN)は、グラフと信号をグラフ上で処理することを目的とした学習モデルである。
本稿では、GNNが区別できないグラフのクラスを完全に特徴づけるために、被覆空間の理論に依存する。
データセット内の識別不能グラフの数は,ノード数とともに指数関数的に増加することを示す。
論文 参考訳(メタデータ) (2022-06-23T17:28:55Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
標準グラフニューラルネットワーク (GNN) はWeisfeiler-Lehman (WL) アルゴリズムよりも差別的な表現を生成する。
また、白い入力を持つ単純な畳み込みアーキテクチャは、グラフの閉経路をカウントする同変の特徴を生じさせることを示した。
論文 参考訳(メタデータ) (2022-05-19T18:40:25Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Expressive Power of Invariant and Equivariant Graph Neural Networks [10.419350129060598]
Folklore Graph Neural Networks (FGNN) は、与えられたテンソル次数に対してこれまで提案されてきた最も表現力のあるアーキテクチャである。
FGNNはこの問題の解決方法を学ぶことができ、既存のアルゴリズムよりも平均的なパフォーマンスが向上する。
論文 参考訳(メタデータ) (2020-06-28T16:35:45Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。