論文の概要: ArchiGuesser -- AI Art Architecture Educational Game
- arxiv url: http://arxiv.org/abs/2312.09334v1
- Date: Thu, 14 Dec 2023 20:48:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 18:00:53.756112
- Title: ArchiGuesser -- AI Art Architecture Educational Game
- Title(参考訳): ArchiGuesser - AIアートアーキテクチャ教育ゲーム
- Authors: Joern Ploennigs and Markus Berger and Eva Carnein
- Abstract要約: 生成AIは、単純な入力プロンプトに基づいて、テキスト、音声、画像から教育コンテンツを作成することができる。
本稿では,様々なAI技術を組み合わせた多感覚学習ゲームArchiGuesserについて述べる。
- 参考スコア(独自算出の注目度): 0.5919433278490629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of generative AI in education is a controversial topic. Current
technology offers the potential to create educational content from text,
speech, to images based on simple input prompts. This can enhance productivity
by summarizing knowledge and improving communication, quickly adjusting to
different types of learners. Moreover, generative AI holds the promise of
making the learning itself more fun, by responding to user inputs and
dynamically generating high-quality creative material. In this paper we present
the multisensory educational game ArchiGuesser that combines various AI
technologies from large language models, image generation, to computer vision
to serve a single purpose: Teaching students in a playful way the diversity of
our architectural history and how generative AI works.
- Abstract(参考訳): 教育における生成AIの利用は議論の余地のあるトピックである。
現在の技術は、簡単な入力プロンプトに基づいて、テキスト、音声、画像から教育コンテンツを作成することができる。
これにより、知識を要約し、コミュニケーションを改善し、異なるタイプの学習者に迅速に適応することで生産性を向上させることができる。
さらに、生成aiは、ユーザの入力に応答し、高品質のクリエイティブ素材を動的に生成することで、学習自体をより楽しくするという約束を守ります。
本稿では,大規模言語モデルから画像生成,コンピュータビジョンに至るまで,さまざまなAI技術を組み合わせた多感覚学習ゲームArchiGuesserについて述べる。
関連論文リスト
- Can AI Be as Creative as Humans? [84.43873277557852]
理論的には、AIは人間の創造者によって生成されたデータに適切に適合できるという条件の下で、人間と同じくらい創造的になれることを証明しています。
AIの創造性に関する議論は、十分な量のデータに適合する能力の問題に縮小されている。
論文 参考訳(メタデータ) (2024-01-03T08:49:12Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - The Cultivated Practices of Text-to-Image Generation [5.498355194100662]
人間は誰でも生成人工知能(AI)を使ってデジタル情報を合成できる新しい創造的時代に入った
特にテキスト・ツー・イメージ・ジェネレーションは非常に人気があり、何百万人もの実践者がAI生成画像やAIアートをオンラインで制作している。
この章ではまず、健全な共同創造型オンラインエコシステムが急速に出現する上で重要な展開の概要を紹介します。
AIアートコミュニティによって受け入れられた創造的なプラクティスである、プロンプトエンジニアリングに特に焦点が当てられている。
論文 参考訳(メタデータ) (2023-06-20T08:59:51Z) - Constructing Dreams using Generative AI [23.344751807278044]
ジェネレーティブAIツールは、若者のための新しい、そしてアクセス可能なメディア作成形式を導入します。
彼らは、偽メディアの生成、データ保護、プライバシー、AI生成アートの所有権に関する倫理的懸念を提起している。
我々は,学生が想像する未来のアイデンティティを表現して生成的AI学習を促進する。
論文 参考訳(メタデータ) (2023-05-19T21:56:12Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - Build-a-Bot: Teaching Conversational AI Using a Transformer-Based Intent
Recognition and Question Answering Architecture [15.19996462016215]
本稿では、自然言語パイプラインを用いて、独自の学校カリキュラムに基づく質問に答えるためにカスタマイズされたモデルを訓練することで、人工知能の原理を学習するためのインタフェースを提案する。
このパイプラインは、AIエージェントを作成しながら、これらのプロセスのそれぞれを通じて、学生のデータ収集、データ拡張、意図認識、質問応答を教える。
論文 参考訳(メタデータ) (2022-12-14T22:57:44Z) - Introducing Variational Autoencoders to High School Students [12.341543369402217]
本報告では,22名の学生を対象に,授業設計について解説し,パイロット研究の知見を共有している。
我々はWebベースのゲームを開発し、哲学的な比喩であるPlatoの洞窟を使って、VAEの仕組みを紹介した。
我々のアプローチは、学生に新しいAI概念を教えるのに効果的であることがわかった。
論文 参考訳(メタデータ) (2021-11-13T04:34:15Z) - Human in the Loop for Machine Creativity [0.0]
我々は、創造的アプリケーションのための既存のHuman-in-the-loop(HITL)アプローチを概念化する。
モデル,インターフェース,機械の創造性に対する長期的影響について検討し,考察する。
テキスト,視覚,音,その他の情報を結合し,人や環境の自動解析を行うマルチモーダルHITLプロセスを提案する。
論文 参考訳(メタデータ) (2021-10-07T15:42:18Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。