Bilayer crystals of trapped ions for quantum information processing
- URL: http://arxiv.org/abs/2312.10681v3
- Date: Tue, 9 Jan 2024 09:05:37 GMT
- Title: Bilayer crystals of trapped ions for quantum information processing
- Authors: Samarth Hawaldar, Prakriti Shahi, Allison L. Carter, Ana Maria Rey,
John J. Bollinger, Athreya Shankar
- Abstract summary: We show that Penning traps can be used to realize remarkably clean bilayer crystals, wherein hundreds of ions self-organize into two well-defined layers.
These bilayer crystals are made possible by the inclusion of an anharmonic trapping potential.
We illustrate that it may be possible to extend the ideas presented here to realize multilayer crystals with more than two layers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trapped ion systems are a leading platform for quantum information
processing, but they are currently limited to 1D and 2D arrays, which imposes
restrictions on both their scalability and their range of applications. Here,
we propose a path to overcome this limitation by demonstrating that Penning
traps can be used to realize remarkably clean bilayer crystals, wherein
hundreds of ions self-organize into two well-defined layers. These bilayer
crystals are made possible by the inclusion of an anharmonic trapping
potential, which is readily implementable with current technology. We study the
normal modes of this system and discover salient differences compared to the
modes of single-plane crystals. The bilayer geometry and the unique properties
of the normal modes open new opportunities, in particular in quantum sensing
and quantum simulation, that are not straightforward in single-plane crystals.
Furthermore, we illustrate that it may be possible to extend the ideas
presented here to realize multilayer crystals with more than two layers. Our
work increases the dimensionality of trapped ion systems by efficiently
utilizing all three spatial dimensions and lays the foundation for a new
generation of quantum information processing experiments with multilayer 3D
crystals of trapped ions.
Related papers
- Scalable architecture for trapped-ion quantum computing using RF traps and dynamic optical potentials [0.0]
In principle there is no fundamental limit to the number of ion-based qubits that can be confined in a single 1D register.
Here we propose a holistic, scalable architecture for quantum computing with large ion-crystals.
We show that these cells behave as nearly independent quantum registers, allowing for parallel entangling gates on all cells.
arXiv Detail & Related papers (2023-11-02T12:06:49Z) - Investigations of 2D ion crystals in a hybrid optical cavity trap for
quantum information processing [0.5461938536945723]
We numerically investigate a hybrid trapping architecture for 2D ion crystals using static electrode voltages and optical cavity fields.
These 2D ion crystals offer an excellent platform for quantum simulation of frustrated spin systems.
arXiv Detail & Related papers (2023-08-18T01:25:25Z) - Controlling two-dimensional Coulomb crystals of more than 100 ions in a
monolithic radio-frequency trap [0.0]
We present experiments with planar Coulomb crystals of about 100 $40$Ca$+$ ions in a novel monolithic radio-frequency trap.
We characterize the trapping potential by analysis of crystal images and compare the observed crystal configurations with numerical simulations.
arXiv Detail & Related papers (2023-02-01T16:38:11Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Disentangling multiple scattering with deep learning: application to
strain mapping from electron diffraction patterns [48.53244254413104]
We implement a deep neural network called FCU-Net to invert highly nonlinear electron diffraction patterns into quantitative structure factor images.
We trained the FCU-Net using over 200,000 unique dynamical diffraction patterns which include many different combinations of crystal structures.
Our simulated diffraction pattern library, implementation of FCU-Net, and trained model weights are freely available in open source repositories.
arXiv Detail & Related papers (2022-02-01T03:53:39Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Parallel single-shot measurement and coherent control of solid-state
spins below the diffraction limit [0.0]
We experimentally demonstrate high-fidelity control over multiple defects with nanoscale separations using an optical frequency-domain multiplexing technique.
We also demonstrate sub-wavelength control over coherent spin rotations using an optical AC Stark shift.
The demonstrated approach may be scaled to large numbers of ions with arbitrarily small separation, and is a significant step towards realizing strongly interacting atomic defect arrays.
arXiv Detail & Related papers (2020-06-02T17:55:54Z) - Integrated optical multi-ion quantum logic [4.771545115836015]
Planar-fabricated optics integrated within ion trap devices can make such systems simultaneously more robust and parallelizable.
We use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates.
Similar devices may also find applications in neutral atom and ion-based quantum-sensing and timekeeping.
arXiv Detail & Related papers (2020-02-06T13:52:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.