論文の概要: How Far Are We? The Triumphs and Trials of Generative AI in Learning
Software Engineering
- arxiv url: http://arxiv.org/abs/2312.11719v1
- Date: Mon, 18 Dec 2023 21:38:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 17:47:35.555045
- Title: How Far Are We? The Triumphs and Trials of Generative AI in Learning
Software Engineering
- Title(参考訳): 距離はどれくらいか?
ソフトウェア工学の学習における生成AIの試行と試行
- Authors: Rudrajit Choudhuri, Dylan Liu, Igor Steinmacher, Marco Gerosa, Anita
Sarma
- Abstract要約: 本研究は,ソフトウェア工学の学生を支援するコンボゲンAIプラットフォームChatGPTの有効性を評価する。
従来の資源と比較して,ChatGPTを用いた場合,参加者の生産性や自己効力度には統計的に差は認められなかった。
また,Human-AIインタラクションガイドライン違反による5つの障害が明らかとなり,参加者に対して7つの異なる(負の)結果が得られた。
- 参考スコア(独自算出の注目度): 16.5141990552784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational Generative AI (convo-genAI) is revolutionizing Software
Engineering (SE) as engineers and academics embrace this technology in their
work. However, there is a gap in understanding the current potential and
pitfalls of this technology, specifically in supporting students in SE tasks.
In this work, we evaluate through a between-subjects study (N=22) the
effectiveness of ChatGPT, a convo-genAI platform, in assisting students in SE
tasks. Our study did not find statistical differences in participants'
productivity or self-efficacy when using ChatGPT as compared to traditional
resources, but we found significantly increased frustration levels. Our study
also revealed 5 distinct faults arising from violations of Human-AI interaction
guidelines, which led to 7 different (negative) consequences on participants.
- Abstract(参考訳): 会話生成AI(convo-genAI)は、エンジニアや学者が自分たちの仕事にこの技術を取り入れているため、ソフトウェア工学(SE)に革命をもたらしている。
しかし、この技術の現在の可能性と落とし穴を理解することにはギャップがあり、特にseタスクの学生を支援する。
本研究では,コンボゲンAIプラットフォームであるChatGPTのSEタスクにおける学生支援効果について,対象間比較(N=22)を通じて評価する。
本研究は,チャットgptを従来の資源と比較すると,参加者の生産性や自己効力の統計的差異は認められなかったが,フラストレーションレベルは有意に増加した。
また,Human-AIインタラクションガイドライン違反による5つの障害が明らかとなり,参加者に対して7つの異なる(負の)結果が得られた。
関連論文リスト
- Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks [45.23431596135002]
本研究は,古典的対パートナー意識による説明が学習作業中の人間の行動とパフォーマンスに与える影響を比較検討した。
その結果, パートナー意識による説明は, 関係する人工エージェントの種類によって, 参加者に異なる影響を及ぼした。
論文 参考訳(メタデータ) (2024-11-15T13:22:04Z) - Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants [175.9723801486487]
我々は,2つのAIアシスタントであるGPT-3.5とGPT-4が適切な回答を得られるかどうかを評価する。
GPT-4は65.8%の質問を正解し、85.1%の質問に対して少なくとも1つの手順で正しい答えを出すことができる。
この結果から,AIの進歩を踏まえて,高等教育におけるプログラムレベルの評価設計の見直しが求められた。
論文 参考訳(メタデータ) (2024-08-07T12:11:49Z) - AI-Tutoring in Software Engineering Education [0.7631288333466648]
我々は,GPT-3.5-TurboモデルをAI-TutorとしてAPASアルテミスに組み込むことで,探索的なケーススタディを行った。
この発見は、タイムリーなフィードバックやスケーラビリティといった利点を浮き彫りにしている。
しかし,AI-Tutor を用いた場合,一般的な応答や学習進行抑制に対する学生の懸念も明らかであった。
論文 参考訳(メタデータ) (2024-04-03T08:15:08Z) - I would love this to be like an assistant, not the teacher: a voice of the customer perspective of what distance learning students want from an Artificial Intelligence Digital Assistant [0.0]
本研究では,仮想AIデジタルアシスタント(AIDA)の設計に関する10人のオンライン・遠隔学習学生の認識について検討した。
参加者全員が、リアルタイムのアシストとクエリの解決、学術的なタスクのサポート、パーソナライゼーションとアクセシビリティのサポート、そして感情的および社会的サポートにAIツールを使用することのメリットを研究し、報告しながら、そのようなAIツールの有用性について同意した。
学生の懸念は、AIDA、データプライバシとデータ利用、運用上の課題、学術的完全性と誤用、教育の将来に関する倫理的・社会的意味に関するものである。
論文 参考訳(メタデータ) (2024-02-16T08:10:41Z) - ChatGPT as a Software Development Bot: A Project-based Study [5.518217604591736]
本研究では,生成型AIツール,特にChatGPTが大学生のソフトウェア開発経験に与える影響について検討した。
その結果,ChatGPTはソフトウェア開発教育におけるスキルギャップに大きく対処し,効率性,正確性,協調性を向上した。
論文 参考訳(メタデータ) (2023-10-20T16:48:19Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
本稿では,GenAIによる双対ジレンマに関するGoogleのワークショップの成果を報告する。
GenAIはまた、攻撃者が新しい攻撃を生成し、既存の攻撃のベロシティと有効性を高めるためにも使用できる。
この話題について,コミュニティの短期的,長期的目標について論じる。
論文 参考訳(メタデータ) (2023-08-28T18:51:09Z) - Perception, performance, and detectability of conversational artificial
intelligence across 32 university courses [15.642614735026106]
大学レベル32科目におけるChatGPTの成績を比較した。
また,ChatGPTの成績は,多くの科目における生徒の成績と同等であることがわかった。
このツールを使用する学生や、これを盗作として扱う教育者の間では、新たなコンセンサスが高まっている。
論文 参考訳(メタデータ) (2023-05-07T10:37:51Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
我々は,カリキュラム強化学習結果を,人的意思決定プロセスから学ぶことで,難しすぎず,難しすぎるような望ましいパフォーマンスレベルに導く。
本システムは非常に並列化可能であり,大規模強化学習アプリケーションの訓練が可能となる。
強化学習性能は、人間の所望の難易度と同期してうまく調整できることが示される。
論文 参考訳(メタデータ) (2022-08-04T23:53:51Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。